Unknown or poorly characterised small, pnictogen-containing molecules: Photochemistry, spectroscopy, photophysics

Robert Kołos Institute of Physical Chemistry, PAS

Complex phosphorus-bearing molecules are extensively studied by biochemists and materials scientists. Yet, many of the simplest organophosphorus species remain only poorly known, this gap being even more evident for their arsenic or antimony analogues.

The lecture will present spectroscopic studies of small molecules generated in cryogenic matrices by UV irradiation of precursors containing trivalent phosphorus (e.g. CH_3CP) or heavier pnictogen atoms (e.g. CH_3AsH_2). It was found that dehydrogenation dominates among the reaction pathways. The resulting species are characterized using IR and UV/Vis spectroscopy. While the phosphorus compounds under study are particularly relevant in astrochemistry, their arsenic- and antimony-bearing counterparts are of broader chemical interest.

Literature:

A. Lawzer, T. Custer, J.-C. Guillemin, R. Kołos; "An efficient photochemical route towards triplet ethynylphosphinidene, HCCP"; *Angew. Chem. Int. Ed.* 60 (2021) 6400.

E. Ganesan, T. Custer, A. Lawzer, J.-C. Guillemin, R. Kołos; "Unusual Quartet-Doublet Phosphorescence from the Phosphaethynyl Radical, CP"; *Angew. Chem. Int. Ed.* 61 (2022) e202210521

A. Lawzer, E. Ganesan, T. Custer, J.-C. Guillemin, and R. Kołos; "Free Ethynylarsinidene and Ethynylstibinidene: Heavier Analogues of Nitrenes and Phosphinidenes"; *Chem. Europ. J.* 29 (2023) e202300887.

A. Lawzer, E. Ganesan, T. Custer, J.-C. Guillemin, and R. Kołos; "Isomerisation of phosphabutyne and a photochemical route to phosphabutadiyne (HC₃P), a phosphorus analogue of cyanoacetylene"; *Phys. Chem. Chem. Phys.* 27 (2025) 7556.

A. Lawzer, T. Custer, J.-C. Guillemin, and R. Kołos; "HC₃As, the simplest arsadiyne"; *Dalton Trans.*, submitted