Strategies for Hydrogen Transformation: From Classical Catalysis to Radical Chemistry

Maria Cristina Garcia Yebra

Faculty of Science, University of Alcalá, Spain

Abstract

The talk will be divided into two main topics that reflect the research focus of Cristina Yebra Garcia's group.

Topic 1: Hydrogen Storage. The first part will cover the latest findings on iridium-catalyzed formic acid dehydrogenation. It highlights the use of $[CpIr(\kappa^2-NN)(Cl)][OTf]$ complexes—featuring κ^2 -NN pyridyl-triazole ligands—as catalysts under neat conditions (i.e., in the absence of an external solvent). These systems exhibit excellent performance, achieving turnover frequencies (TOF_max) of up to 10,703 h⁻¹, and selectively produce a 1:1 mixture of hydrogen and carbon dioxide, with no detectable carbon monoxide. Kinetic studies and ¹H NMR spectroscopy confirm that the active species is [CpIr(CO)H₂].

Topic 2: Palladium(I)-NHC Metalloradicals – **Reactivity Towards Small Molecules.** This section will focus on the synthesis, characterization, and reactivity of mononuclear Pd(I)-NHC metalloradicals. The speaker will discuss their reactions with O_2 , which result in the formation of radical superoxide species, and with H_2 , which proceed via a radical pathway to yield Pd(II) monohydride complexes.