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I. INTRODUCTION 
 
 In the first part of this review1 we have presented fundamental 
aspects of electrochemical impedance spectroscopy (EIS) and showed 
how they can be used in data validation and modeling of processes 
limited by diffusion, electrode kinetics and adsorption for cases of 
different types of electrode geometries. In this chapter we shall present 
a general matrix method for impedance determination and apply it to 
solve electrochemical problems connected with H adsorption and 
absorption, and evolution of H2. These processes present many 
problems which are similar to those found in metal underpotential 
deposition, intercalation, corrosion, etc. Of course, the literature of this 
subject is very rich and only some selected applications, which 
illustrate development of various typical impedances, will be presented. 
Obviously, it is assumed that the impedance was correctly measured 
and validated. This presentation should help researchers to develop 
equations for impedances and transfer functions, and correctly model 

1

A. Lasia, “Applications of the Electrochemical Impedance Spectroscopy to Hydrogen
Adsorption, Evolution and Absorption into Metals”, Modern Aspects of Electrochemistry,
B.E. Conway and R.E. White, Edts, Kluwer/Plenum, New York, vol. 35, p. 1-49 (2002). 
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the electrode processes to which they are applied. This is the most 
difficult, but quickly developing, part of the whole field. With a good 
knowledge of the literature, it is possible to avoid many pitfalls of 
electrochemical impedance spectroscopy (EIS). It should be stressed 
again that EIS is a very sensitive technique but it is usually not 
sufficient to solve all the emergent problems. Good transfer of 
knowledge from other electro-chemical and nonelectrochemical 
techniques is a complementary requirement. 
 
 

II. DETERMINATION OF IMPEDANCES 
 
 Impedances may be written for any mechanism. The use of matrix 
notation simplifies complex calculations. Below, a general method 
using matrices is presented and applied to a complex mechanism. This 
method will be used throughout this chapter. 
 Let us suppose that species A and C are soluble (diffusing species) 
and species B is adsorbed on the electrode surface: 
 

A + e  Bads (1) 
 

Bads + e  C (2) 
 
Rates of these processes may be described by the following equations: 
 

1 1 1(0)(1 )Av k c k−= − Θ − Θ  (3a) 

2 2 2 (1 ) (0)Cv k k c−= Θ − − Θ  (3a) 
 
where subscripts 1 and 2 correspond to reactions (1) and (2), Θ is the 
fractional surface coverage by B, that is the ratio of the surface 
concentration of B, ΓB, to the maximal surface concentration, Γ∞, 

( )expi ik k fE= −β  and ( )exp 1i ik k fE− −= − β⎡ ⎤⎣ ⎦  are the potential-
dependent rates of these reactions, β is the symmetry coefficient, η the 
overpotential, and CA(0) and CC(0) are surface concentrations of the 
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soluble species A and C. From the equilibrium condition (v1 = v2 = 0) 
arises the following well-known relation between rate constants and 
concentrations: 
 

*
1 2

*
1 2

1A

C

k k C
k k C− −

=  (4) 

 
where *

AC  and *
CC  are the bulk concentrations of species A and C. 

 In order to solve the problem described by Eqs. (1)-(2) it is 
necessary to write equations for: (i) current as a function of the rate 
constants, Eq. (7) below, (ii) current as function of fluxes of diffusing 
species, Eq. (6), and (iii) the mass balance relations for adsorbed 
species, Eq. (9). The total current flowing in a steady-state is given as: 
 

0 0

1 2 0

2 2

( )

CA
A C

x x

CCi FD FD
x x

F v v Fr
= =

∂∂ ⎛ ⎞⎛ ⎞= = −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
= + =

 (5) 

 
Where r0 = v1 + v2. Next, these equations must be written for phasors. 
Assuming linear, semi-infinite, diffusion, the oscillating current may be 
written (see Part I, Section III.2, ref. 1) as 
 

2 (0) 2 (0)A A C Ci F j D C F j D C= − ω = ω  (6) 
 
and 
 

0 0 0 0
0 (0) (0)A C

A C

r r r ri Fr F C C
C C

⎡ ⎤⎛ ⎞⎛ ⎞⎛ ∂ ⎞ ∂ ∂ ∂⎛ ⎞= = η+ Θ + +⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟∂η ∂Θ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
 (7) 

 
Moreover, the mass balance for adsorbed species must be added, i.e. 
 

1 2 1
Bd v v r

dt∞
Θ

Γ = − =  (8) 
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where r1 = v1 – v2 is the rate of adsorption of B. Equation (8), written 
for phasors, is: 
 

1 1 1 1(0) (0)A C
A C

r r r rj C C
C C∞

⎛ ⎞⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞Γ ωΘ = η+ Θ + + ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟∂η ∂Θ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (9) 

 
Equations (6), (7) and (8) may be rearranged into: 
 

0 0 0 0

1 1 1 1

(0) (0)

(0)
2

(0)
2

(0) (0)

A C
A C

A A

C C

A C
A C

r r r ri C C
F C C

i j D C
F
i j D C
F

r r r rj C C
C C∞

⎛ ⎞⎛ ⎞⎛ ∂ ⎞ ∂ ∂ ∂⎛ ⎞= η+ Θ + + ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟∂η ∂Θ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= − ω

= ω

⎛ ⎞⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞Γ ωΘ = η+ Θ + + ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟∂η ∂Θ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (10) 

 
or, in a matrix form Y = AX, after division by η : 
 

0, 0 0 0

1 1 11

1

10 0 0
2
1 (0)0 00 2

(0)0

A C

A

C
C

A
A C

ir r r r
F C C

j D
F

Cj D
F

r r rr Cj
C C

η

∞

⎡ ⎤∂⎡ ⎤ ∂ ∂ ∂⎡ ⎤− ⎢ ⎥−⎢ ⎥ ⎢ ⎥ η∂η ∂Θ ∂ ∂ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ Θ⎢ ⎥ ⎢ ⎥⎢ ⎥ − − ω⎢ ⎥ η⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ω⎢ ⎥ ⎢ ⎥ η⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ∂ ∂ ∂⎢ ⎥∂ − Γ ω ⎢ ⎥⎢ ⎥− ⎢ ⎥∂Θ ∂ ∂ ⎢ ⎥⎣ ⎦⎢ ⎥∂η η⎣ ⎦ ⎣ ⎦

 (11) 

 
The Faradaic admittance is /fY i= − η  and may be calculated using 
Cramer’s rule: ˆ /fY T B= − , where B is the determinant of A, and 
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determinant T is obtained by substitution of the first column in B by Y = 
det(Y): 
 

0 0 0 0

1 1 1 1

0 0 0

0 0 0

A C

A

C

A C

r r r r
C C

j D
T

j D
r r r rj

C C∞

∂ ∂ ∂ ∂
−

∂η ∂Θ ∂ ∂

− ω
=

ω
∂ ∂ ∂ ∂

− − Γ ω
∂η ∂Θ ∂ ∂

 (12a) 

 
and 
 

0 0 0

1 1 1

1

1 0 0
2
1 0 0

2

0

A C

A

C

A C

r r r
F C C

j D
FB

j D
F

r r rj
C C∞

∂ ∂ ∂
−

∂Θ ∂ ∂

− − ω
=

− ω

∂ ∂ ∂
− Γ ω

∂Θ ∂ ∂

 (12a) 

 
These determinants may be expanded into: 
 

( ) ( )

( ) ( )

2
0, 0, 1, 0, 1,

2
4 2

( )A CT D D r j r r r r j

a j a j

∞ η η Θ Θ η⎡ ⎤= −Γ ω + − ω⎣ ⎦

= ω + ω
 (13a) 
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( )

( ) ( )

( )

( )

( ) ( ) ( ) ( )

2

3/ 2
0, 0,

1,

0, 1, 0, 1, 1/ 2

0, 1, 0, 1,

2 3/ 2 1/ 2
4 3 2 1

2

1
2

1
2

A C

A C

A C

A C

C C A C

A C

C C A C

C C A C

D D j

D r D r j

B D D r j
F

D r r D r r
j

D r r D r r

b j b j b j b j
F

∞

∞

Θ

Θ Θ

Θ Θ

⎡ ⎤− Γ ω
⎢ ⎥
⎢ ⎥+Γ − + ω
⎢ ⎥
⎢ ⎥= + ω⎢ ⎥
⎢ ⎥⎛ ⎞−⎢ ⎥⎜ ⎟+ ω⎢ ⎥⎜ ⎟− +⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤= ω + ω + ω + ω
⎣ ⎦

 (13a) 

 
They are polynomials of the second order in jω. The faradaic 
impedance may then be calculated and simplified into: 

( ) ( )
( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

2
4 2

2 3/ 2 1/ 2
4 3 2 1

1/ 23 2 2 1

4 4 4 44 4
3/ 2 1/ 23 2 14 4

4 4 4

ˆ 2

2

f
a j a j

Y F
b j b j b j b j

b b a bj j
b b a ba aF b b bb b j j j

b b b

ω + ω
= −

ω + ω + ω + ω

⎧ ⎫⎡ ⎤⎛ ⎞
ω + − ω +⎪ ⎪⎢ ⎥⎜ ⎟

⎪ ⎪⎝ ⎠⎢ ⎥= − −⎨ ⎬⎢ ⎥⎪ ⎪ω + ω + ω +⎢ ⎥⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

 (14) 

 
The first term is the inverse of the charge transfer resistance 

1
4 42 /ctR Fa b− = − . Further rearrangements of this equation are possible 

and the faradaic impedance may also be easily determined.  
 A general method of treating the electrochemical impedance of 
multistep mechanisms was presented by Harrington2 and Harrington 
and Driessche.3 
 
 

III. HYDROGEN UPD 
 
 On several noble metals (Pt, Rh, Ru, Ir, Pd) hydrogen ion 
reduction takes place at the potentials positive to the equilibrium 
potential for hydrogen evolution. This is so-called hydrogen 
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underpotential deposition (H UPD) and indicates strong adsorptive 
interaction between atomic hydrogen and the metal. Similar UPD 
processes are observed for deposition of metals on metals4. Such a 
reaction may be written as: 
 

1

1

+
adsH  +M MH

k

k
e

−

⎯⎯→
←⎯⎯⎯+  

or 
1

1

-
2 adsH O+M +  MH OH

k

k
e

−

⎯⎯→
←⎯⎯⎯ +  

(15) 

 
in acid and alkaline solutions, respectively. Assuming Langmuir 
adsorption isotherm for H, the rate of this reaction is given as: 
 

0 0
1 1

1

- ( ) (1 ) ( )
0 0e ef E E f E E

s HH

dQ di
dt dt

F k C k+
β − −β −

Θ
= = σ

⎡ ⎤= Γ − Γ⎢ ⎥⎣ ⎦

 (16) 

 
where Q is the charge corresponding to the adsorption of H, σ1 is the 
charge necessary for attainment of monolayer coverage by adsorbed H, 
k0 is the standard rate constant, Γs is the surface concentration of free 
sites (in mol cm-2), ΓH is the surface concentration of adsorbed H and 

0
1E  is the standard potential of reaction (15). The fractional surface 

coverage by adsorbed H is H H H/( ) /s ∞Θ = Γ Γ + Γ = Γ Γ , where Γ∞ = 
ΓH + Γs is the total concentration of adsorption sites. The equilibrium 
potential for the H UPD reaction can be expressed as: 

( ) ( )+
0 *
1 H/ ln[ 1 / ]eqE E RT F C− = − Θ Θ . Taking as a reference state the 

potential Ep at which Θ = 0.5 (corresponding to the peak potential on 
cyclic voltammograms, +

0 *
1 H/ lnpE E RT F C= + ) and introducing it 

into Eq. (16),  
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( )

+

1 1

- ( ) (1 ) ( )* 1 * 1
0 0H H

1 1

e e

1

p pf E E f E E

di Fv
dt

F k C k C

F k k

+
β − −β −−β −β

∞ ∞

−

Θ
= σ =

⎡ ⎤= Γ Θ − Γ =⎢ ⎥⎣ ⎦
⎡ ⎤= − Θ − Θ⎣ ⎦

 (17) 

 
is obtained, where 1k  and 1k−  are potential dependent rate constants 
which also include concentration terms: 1k =  

+
* 1-

0 H exp[- ( )]pk C f E Eβ
∞Γ β −  and 1k− =  

+
* 1-

0 H exp[(1- ) ( )]pk C f E Eβ
∞Γ β − . Let us also introduce overpotential, 

defined here as η = E – Ep. The impedance of this process was 
developed by Harrington and Conway5 and discussed by Lasia.6,7  
Equation (17) may be linearized as: 
 

1 1 1
1

i d v vv
F F dt

⎛ ⎞∆ σ ∆Θ ∂ ∂⎛ ⎞= ∆ = = ∆η+ ∆Θ⎜ ⎟⎜ ⎟∂η ∂Θ⎝ ⎠⎝ ⎠
 (18) 

 
or, introducing phasors (see Part I, Section 4.1, ref. 1), 
 

1 1 1i v vj
F F

⎛ ⎞σ ∂ ∂⎛ ⎞= ω Θ = η+ Θ⎜ ⎟⎜ ⎟∂η ∂Θ⎝ ⎠⎝ ⎠
 (19) 

 
results. These equations may be written in a matrix form: 
 

1 1

1 1 1

1

0

iv v
F

v v j
F

⎡ ⎤∂⎡ ⎤ ∂⎡ ⎤− − ⎢ ⎥⎢ ⎥ ⎢ ⎥ η∂η ∂Θ ⎢ ⎥⎢ ⎥ = ⎢ ⎥
⎢ ⎥∂ ∂ σ⎢ ⎥ Θ⎢ ⎥− − ω ⎢ ⎥⎢ ⎥ ⎢ ⎥∂η ∂Θ⎣ ⎦ η⎢ ⎥⎣ ⎦ ⎣ ⎦

 (20) 

 
and the faradaic admittance ˆ /fY i= − η  is then 
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1 1

11

1

1

ˆ
f

v F vF
v ACY F A

F v j Cj

⎛ ⎞∂ ∂⎛ ⎞
⎜ ⎟⎜ ⎟∂η σ ∂Θ⎛ ⎞∂ ⎝ ⎠⎝ ⎠= − − = −⎜ ⎟ ∂∂η ω+⎛ ⎞⎝ ⎠ ω− ⎜ ⎟σ ∂Θ⎝ ⎠

 (21) 

 
where ( )11/ /ctA R F v= = − ∂ ∂η  and ( ) ( )1 1/ /C F v= − σ ∂ ∂Θ . The 
faradaic impedance follows as: 
 

1 1 1 1ˆ
ˆ ( / )f ct

pf
Z R

A j A C j CY
= = + = +

ω ω
 (22) 

 
This equation corresponds to a connection of the charge transfer 
resistance, Rct, and the capacitance, Cp, in series. It is an analog of Eq. 
(143), Part I, the corresponding complex plane plot represents a 
semicircle followed by a capacitive line was shown in Figure 23 (Part 
I). The total impedance consists of the solution resistance, Rs, in series 
with the parallel connection of the double-layer capacitance, Cdl, giving 
the faradaic impedance: 
 

1ˆ
1
ˆ

s

dl
f

Z R
j C

Z

= +
ω +

 
(23) 

 
On solid electrodes, very often Cdl must be substituted by a constant-
phase element (see Part 1, Section V.2, ref.1) 
 

( )
1ˆ

1
ˆ

s

f

Z R
j T

Z
φ

= +
ω +

 
(24) 

 
Assuming transfer coefficients as equal to 0.5, the equivalent circuit 
parameters may be described as: 
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( )2
1 1 0

1 1 1 2 cosh 0.5ct
RTR f

fF k k F k−

⎛ ⎞
= + = η⎜ ⎟

⎝ ⎠
 (25) 

 
It should be noticed that the pseudocapacitance Cp is independent of the 
rate constants; hence the kinetic information may be obtained only 
from the charge-transfer resistance. Assuming that σ1 = 210 µC cm –2 8, 
the following values of the equivalent electrical circuit elements are 
obtained at η = 0 6,7: 
 

7
2

2
00

-21

2 5.33 10 cm

2.04 mF cm
4

ct

p

RTR
kF k

FC
RT

−×
= = Ω

σ
= =

 (26) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Dependence of the adsorption pseudocapacitance of the hydrogen UPD on
overpotential assuming Langmuir isotherm. 
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-2
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The dependences of Cp and log Rct on overpotential are shown in Figure 
1 and 2, respectively. In Figure 1 a maximum of Cp and in Figure 2 a 
minimum of Rct arises at Ep, that is for η = 0. In the case of symmetry 
coefficients different from 0.5, the minimum of Rct is slightly shifted 
(see Part I, Section III.2, ref. 1). 
 However, more complex behavior is observed experimentally. On 
polycrystalline platinum two voltammetric peaks are observed; this 
indicates a distribution of adsorption energies and/or a more complex 
adsorption isotherm. Plots of the experimental impedance on polycrys-
talline Pt show a capacitive behavior6,7 but the analysis allowed only 
determination of the pseudocapacitance, which was identical with that 
determined using cyclic voltammetry. The maximal capacitance was 
~1.2 mF cm-2, which is lower than the maximal value for Langmurian 
behavior indicating that the experimental isotherm is more complex.  

 
Figure 2. Dependence of the logarithm of the charge transfer resistance on overpotential 
for k0 = 10-5 mol cm-2 s-1, assuming Langmuir isotherm. 

 
 

η / V
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m
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Morin et al.9 studied the UPD of H on Pt single-crystal electrodes. The 
obtained complex plane plots resembling those predicted theoretically; 
an example obtained on Pt(100) in 0.5 M H2SO4 is shown in Figure 3 
(note that deformation is connected with different scales being used for 
the two axes). 
 Analysis according to Eq. (22) for an equivalent circuit containing 
solution resistance, Rs, and double-layer capacitance, Cdl, allowed all of 
the parameters to be determined. An example of the dependence of Cp, 
Cdl, and Rct on electrode potential for Pt(100) is shown in Figure 4. It is 
surprising that Rct is practically potential independent over a wide 
potential range and Cdl and Cp seem to be correlated. It was also found 
that at more positive potentials on Pt(311) there is an influence of 
anionic (HSO4

-) adsorption. In the equivalent circuit, an additional 
element containing connection Rp2-Cp2 in series should be added in 
parallel with the faradaic impedance, Eq. (22). Further studies of the H 
UPD adsorption isotherm should explain this complex adsorption 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Complex-plane plots for Pt(100) in 0.5 M H2SO4 at two potentials. The solid 
lines correspond to fitting of the data using the equivalent circuit described by Eqs. (22) 
and (24).9 
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behavior. It should be added that these measurements are difficult 
because of the high H UPD rate.  Harrington10 has applied ac 
voltammetry to the study of hydrogen UPD and has determined the 
fastest sweep rate which can be used without affecting the slow ac 
response. 
 It should be added that similar mathematical treatment might be 
carried out for the UPD of metals. 
 
 

IV. THE HYDROGEN EVOLUTION REACTION 
 

1. The HER in the absence of mass-transfer effects 
 
The hydrogen evolution reaction is one of the most often-studied 
electrocatalytic reactions. It is well accepted that the reaction 
mechanism usually proceeds through three steps5 -7, 11, 12: (i) 
electrochemical adsorption or the Volmer reaction, (15), and two 
possible desorption steps: (ii) electrochemical desorption, the 
Heyrovsky reaction, (28), and (iii) chemical desorption, the Tafel 
reaction, (29). They may be written for the reactions in acidic or 
alkaline solutions: 
 

1

1

+
adsH  +M + MH

k

k
e

−

⎯⎯⎯→
←⎯⎯⎯  

or 
1

1

-
2 adsH O+M +    MH OH

k

k
e

−

⎯⎯⎯→
←⎯⎯⎯ +  

(27) 

 
2

2

+
2MH + H  +   M + H

k

k
e

−

⎯⎯⎯→
←⎯⎯⎯  

or 
2

2

-
2 2MH + H O +   M + OH + H

k

k
e

−

⎯⎯⎯→
←⎯⎯⎯  

(28) 
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Figure 4. (a) Pseudocapacitance Cp, (b) double layer capacitance Cdl and (c) charge 
transfer resistance Rct as a function of the applied potential (vs. RHE) for the H UPD on a 
Pt(100) electrode in 0.5 M H2SO4.9 

 
3

3
22 MH  2 M + H

k

k−

⎯⎯⎯→
←⎯⎯⎯  (29) 



Applications of Electrochemical Impedance 15

 
These reaction steps involve H adsorbed on the electrode surface (case 
of one adsorbed species, see Section IV-1, Part I, ref. 1). Below, kinetic 
equations will be presented for hydrogen evolution in alkaline solutions 
but similar equations may be easily written for the reactions in acidic 
media. Assuming a Langmuir adsorption isotherm for H on the 
electrode surface, the rates, vi (in mol cm-2 s-1), of these reactions are: 
 

( ) ( )0 0
1 1 1 1

2

(1 )0 0
1 1,0 H O 1,0 OHe e

f E E f E E
s Hv k a k a −

−β − −β −
= Γ − Γ  (30) 

 
( ) ( )0 0

2 2 2 2

2 2

(1 )0 0
2 2,0 H O H 2,0 H OHe e

f E E f E E
sv k a k a a −

−β − −β −
= Γ − Γ  (31) 

 

2
0 2 0 2

3 3,0 H 3,0 Hsv k k a= Γ − Γ  (32) 

 
where 0

,0ik  are the standard reaction rate constants, 0
iE  the standard 

electrode potentials, ΓH and Γs the surface concentrations of adsorbed H 
and that of free sites (in mol cm-2), and βi symmetry coefficients. 
Introducing the surface coverages, H H,max/Θ = Γ Γ  and 

H,max1 /s− Θ = Γ Γ , and the overpotential eqE Eη = − , the following 
equations are obtained: 
 

( )
1

1
2

2

1

2 1

OH ,00 0
1 1 H O

0 H O,0

1
H O,0 (1 )0 0

1 OH
0 OH ,0

1 e
1

1 e

f

f

a
v k a

a

a
k a

a

−

−
−

β
−β η

−β

−β η

⎡ ⎤⎛ ⎞Θ
= − Θ ⎢ ⎥⎜ ⎟− Θ⎝ ⎠⎢ ⎥⎣ ⎦

⎛ ⎞− Θ⎜ ⎟− Θ
⎜ ⎟Θ⎝ ⎠

 (33) 
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( )

2
2 2

2
2

2

2 2
2

2

H ,0 OH ,00 0
2 2 H O

0 H O,0

1
H O,0 (1 )0 0

2 H OH
0 H ,0 OH ,0

1 e

1 e
1

f

f

a a
v k a

a

a
k a a

a a

−

−
−

β
−β η

−β

−β η

⎛ ⎞− Θ
= Θ⎜ ⎟⎜ ⎟Θ⎝ ⎠

⎛ ⎞Θ⎜ ⎟− − Θ
⎜ ⎟− Θ⎝ ⎠

 (34) 

 

( ) 2

20 2 0
3 3 3 H1v k k a= Θ − − Θ  (35) 

 
where: 0 0

1 1,0 ,maxHk k= Γ , 0 0
2 2,0 ,maxHk k= Γ , 0 0 2

3 3,0 ,maxHk k= Γ , and index "0" 
indicates parameters measured at η = 0. These equations may 
subsequently be rearranged into: 
 

2 1 1

2

H O (1 )OH
1 1,0 1,0

H O,0 0 0OH ,0

1 e e
1

f faa
v v v

a a
−

−

−β η −β η
⎛ ⎞⎛ ⎞⎛ ⎞− Θ Θ⎜ ⎟= −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟− Θ Θ⎝ ⎠⎝ ⎠ ⎝ ⎠

 (36) 

 

2 2

2

2 2

2

H O
2 2,0

H O,0 0

H (1 )OH
2,0

H ,0 0OH ,0

e

1 e
1

f

f

a
v v

a

a a
v

a a
−

−

−β η

−β η

⎛ ⎞ Θ
= ⎜ ⎟⎜ ⎟ Θ⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞− Θ⎜ ⎟− ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ − Θ⎝ ⎠⎝ ⎠⎝ ⎠

 (37) 

 

2

2

2 2
H

3 3,0 2 2
0 0 H ,0

(1 )
(1 )

a
v v

a

⎡ ⎤Θ − Θ
⎢ ⎥= −

Θ − Θ⎢ ⎥⎣ ⎦
 (38) 

 
where vi,0 is the reaction rate in each direction at the equilibrium 
potential. When concentration polarization may be neglected, these 
equations simplify to: 
 

1 1(1 )
1 1 1 1 1(1 )e e (1 )f fv k k k k−β η −β η

− −= − Θ − Θ = − Θ − Θ  (39) 
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2 2(1 )

2 2 2 2 2e (1 )e (1 )f fv k k k k−β η −β η
− −= Θ − − Θ = Θ − − Θ  (40) 

 
2 2

3 3 3(1 )v k k−= Θ − − Θ  (41) 

 
From the condition η = 0, it also follows that: 
 

2
1 31 2

2
1 2 1 3

1k kk k
k k k k− − − −

= =  (42) 

 
In the steady-state 1 2 32 0v v v− − =  and the dc surface coverage is 
given by 
 

1 1

1 1 2 2

k k
k k k k

−

− −

+
Θ =

+ + +
 (43) 

 
In general, to describe the hydrogen evolution kinetics, it is necessary 
to determine four (out of six) rate constants and two transfer 
coefficients. Such a procedure is quite difficult and the results of dc and 
ac experiments must be used to determine these parameters. In order to 
evaluate the reaction impedance, a linearization method is used, as 
described in Section IV-1, Part 1, ref.1:  
 

0 0r ri ii F
η ηΘ Θ

⎡ ⎤⎛ ⎞ ⎛ ∂ ⎞ ∂∂ ∂ ⎛ ⎞⎛ ⎞∆ = ∆η+ ∆Θ = ∆η+ ∆Θ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂η ∂Θ ∂η ∂Θ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
 (44) 

 

1 1 1
1

d r rr
F dt ηΘ

⎛ ⎞σ ∆Θ ∂ ∂⎛ ⎞= ∆ = ∆η+ ∆Θ⎜ ⎟⎜ ⎟∂η ∂Θ⎝ ⎠⎝ ⎠
 (45) 

 
where r0 = v1 + v2 and r1 = v1 - v2 - v3. Introducing phasors for Θ, η, i 
and ri results in 
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0 0
0

r ri r
F ηΘ

⎛ ∂ ⎞ ∂⎛ ⎞= = η+ Θ⎜ ⎟⎜ ⎟∂η ∂Θ⎝ ⎠⎝ ⎠
 (46) 

 
~ ~ ~

1 1 1r rj
F ηΘ

⎛ ⎞σ ∂ ∂⎛ ⎞ωΘ = η+ Θ⎜ ⎟⎜ ⎟∂η ∂Θ⎝ ⎠⎝ ⎠
 (47) 

 
These equations may be represented in matrix form as 
 

0 0

1 1 1

1

0

ir r
F

r r j
F

⎡ ⎤∂⎡ ⎤ ∂−⎡ ⎤− ⎢ ⎥⎢ ⎥ ⎢ ⎥ η∂η ∂Θ ⎢ ⎥⎢ ⎥ = ⎢ ⎥
⎢ ⎥∂ ∂ σ⎢ ⎥ Θ⎢ ⎥− − ω ⎢ ⎥⎢ ⎥ ⎢ ⎥∂η ∂Θ⎣ ⎦ η⎢ ⎥⎣ ⎦ ⎣ ⎦

 (48) 

 
giving the faradaic impedance as: 
 

2
0 1

10

1

1

ˆ
f

rF r
ri BY F A

F r j Cj

η Θ

Θ

η

∂ ⎛ ⎞∂⎛ ⎞
⎜ ⎟ ⎜ ⎟σ ∂Θ ∂η⎝ ⎠⎛ ∂ ⎞ ⎝ ⎠= − = − − = +⎜ ⎟ ∂η ∂η ω+⎛ ⎞⎝ ⎠ ω− ⎜ ⎟σ ∂Θ⎝ ⎠

 (49) 

 
where 
 

0rA F
Θ

⎛ ∂ ⎞
= − ⎜ ⎟∂η⎝ ⎠

, 
2

0 1

1

rF rB
η Θ

∂ ⎛ ⎞∂⎛ ⎞= − ⎜ ⎟ ⎜ ⎟σ ∂Θ ∂η⎝ ⎠ ⎝ ⎠
, 

and 1

1

F rC
η

∂⎛ ⎞= − ⎜ ⎟σ ∂Θ⎝ ⎠
 

(50) 

 
The faradaic admittance, Eq. (49), may be written as a corresponding 
impedance: 
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1ˆ
1f ct

p
p

Z R
j C

R

= +
ω +

 
(51) 

 
see also Part I, Chapter IV.2, ref.1, where: 
 

2

2
1 1, ,ct p p

AR C R
A B A C A

B

= = − = −
+

 
(52) 

 
Equation (49) is identical with Eq. (135), Part I, the only difference is 
the definition of the parameter r1. As was shown in Part I, this process 
may produce two semi-circles on the complex plane plots. Such plots 
have been observed for the HER on Pt,13,14 Ni-Fe,15 Ru,16,17 Rh,18 
electrocodeposited Raney Ni.19,20 However, one semicircle is usually 
observed in the complex plane plots of Ni21 and Ni-based rough and 
porous electrodes such as Ni-Zn alloy,22  Ni-B,23,24  Ni-P,25  Ni-Zn-P,26 
etc. For some electrode materials (Ni-Zn27, 28 and Ni-Al29,28 pressed 
powders), surface porosity causes appearance of two semi-circles in the 
complex plane plots, with the first one being connected with surface 
porosity, Section V-4 (iii), Part I. In other cases, de Levie's porous or 
fractal models have been used.25, 30-33   
 

2. In the presence of hydrogen mass-transfer 
 
 Recently, the influence of the mass transfer of evolved hydrogen 
was evidenced for the HER on single crystal Pt surfaces in H2SO4.34, 35 
Activity of Pt(hkl) depends on the crystallographic orientations36 and 
effects of hydrogen diffusion from the electrode are observed on the 
rotating disk electrode. In order to deal with this problem, Eqs. (40) and 
(41) should be rearranged, using Eqs. (37) and (38). Neglecting the 
mass-transfer limitations of protons towards the electrode one obtains 
(concentrated acid solution): 
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( )2 2 2 0(1 ) / *v k k C C−= Θ − − Θ  (53) 

 
and 
 

( )2 2
3 3 3 0(1 ) / *v k k C C−= Θ − − Θ  (54) 

 
where C0 and C* are the surface and bulk hydrogen (H2) 
concentrations, respectively. Current, surface coverage changes and the 
diffusional flux of hydrogen may be written as: 
 

( )1 2 0i F v v Fr= + =  (55) 
 

1
1 2 3 12d v v v r

F dt
σ Θ

= − − =  (56) 

 

2
0

H H 2 3 22
dCJ D v v r
dx

= − = + =  (57) 

 
where 

2HJ  is the flux of dissolved hydrogen and 
2HD  its diffusion 

coefficient. For the rotating disk electrode, the flux is: 

2 2H H 0( *) /J D C C= − δ  where the diffusion layer thickness is given by: 
1/3 1/6 1/ 21.612D −δ = ν Ω , with v being the kinematic viscosity and Ω the 

rotation frequency. In order to determine the faradaic impedance Eqs. 
(55)-(57) must be expressed as phasors. The diffusional flux of 
hydrogen, for the rotating-disk electrode (finite length diffusion, 
transmissive conditions) is expressed as: 
 

2 2
2

H 0 H 0
H

coth 'jJ C j D J C
D

⎛ ⎞ω⎜ ⎟= ω δ =
⎜ ⎟
⎝ ⎠

 (58) 

 

0 0r ri F
⎡ ⎤⎛ ∂ ⎞ ∂⎛ ⎞= η+ Θ⎢ ⎥⎜ ⎟⎜ ⎟∂η ∂Θ⎝ ⎠⎝ ⎠⎣ ⎦

 (59) 
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1 1 1 1
0

0

r r rj C
F C

⎛ ⎞⎛ ⎞σ ∂ ∂ ∂⎛ ⎞ω Θ = η+ Θ + ⎜ ⎟⎜ ⎟⎜ ⎟∂η ∂Θ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠
 (60) 

 

2
2

2 2
0 H 0

H 0
coth j r rC j D C

D C

⎛ ⎞ ⎛ ⎞ω ∂ ∂⎛ ⎞⎜ ⎟ω δ = Θ + ⎜ ⎟⎜ ⎟⎜ ⎟ ∂Θ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
 (61) 

 
They may be written in a matrix form: 
 

0 0

1 1 1 1

0

2 2 0

0

1 0

0

0 '0

ir r
F

r r rj
F C

r r CJ
C

⎡ ⎤⎡ ⎤∂⎡ ⎤ ∂− ⎢ ⎥−⎢ ⎥⎢ ⎥ η∂η ∂Θ ⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥∂ ∂ σ ∂ Θ⎢ ⎥− = − ω ⎢ ⎥⎢ ⎥⎢ ⎥∂η ∂Θ ∂ η⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥∂ ∂⎢ ⎥ − ⎢ ⎥⎢ ⎥⎢ ⎥ ∂Θ ∂⎣ ⎦ ⎢ ⎥ η⎢ ⎥⎣ ⎦ ⎣ ⎦

 (62) 

 
The faradaic admittance is then: 
 

ˆ

'

f
BY A Dj C

E J

= +
ω+ +

−

 
(63) 

 
where A, B, and C were defined in Eq. (50) and the parameters D and E 
are: 
 

1 2

1 0

F r rD
C

⎛ ⎞∂ ∂⎛ ⎞= ⎜ ⎟⎜ ⎟σ ∂ ∂Θ⎝ ⎠⎝ ⎠
  and  2

0

rE
C

⎛ ⎞∂
= ⎜ ⎟∂⎝ ⎠

 (64) 

 
Equation (63) differs from Eq. (49) by the presence of the additional 
term in the denominator. It may be further simplified by assuming the 
Volmer-Tafel mechanism. It can be rearranged into a faradaic 
impedance: 
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1

1ˆ
1

ˆ
f ct

p p
des W

Z R
j C R

R Z
−

= +
ω + +

+

 
(65) 

 
where 
 

2
2

H2 2
H

ˆ,    cothdes W
BE B jR Z j D

DA D A D

⎛ ⎞ω⎜ ⎟= − = ω δ
⎜ ⎟
⎝ ⎠

 (66) 

 
Equation (65) differs from Eq. (49) by the presence of a new parallel 
branch in the equivalent circuit, containing connection of a desorption 
resistance Rdes and mass transfer impedance ˆ

WZ  in series (note typing 
errors in the original publications, cited as refs. 34 and 35). 
 Determination of the kinetic parameters of the hydrogen evolution 
reaction is usually carried out by simultaneous approximation of the dc 
current and the parameters obtained from the impedance technique (A, 
B, C) by adjusting the kinetic parameters (rate constants); however, 
several authors used approximation of the EIS data only.11,12,16-25, 27-32, 

34-40   
 
 

V. HYDROGEN ABSORPTION INTO METAL 
ELECTRODES 

 
1. Hydrogen adsorption, absorption and evolution: Linear 

diffusion 
 
We now consider the hydrogen evolution reaction at negative 
overpotentials, Eqs. (15), (28) and (29), accompanied by the process of 
H absorption into the cathode material: 
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4

4
ads absMH MH

k

k−

⎯⎯⎯→
←⎯⎯⎯  (67) 

 
followed by diffusion of hydrogen into the bulk metal.41 This process is 
observed on hydrogen-absorbing metals (Pd) and alloys (e.g. LaNi5). 
Let it be supposed that a metallic layer of the thickness l is deposited on 
a non-absorbing support, from which hydrogen cannot escape. The 
same reasoning may be applied to H deposition on a metallic foil 
immersed in the solution; in this case the layer thickness l is half the 
thickness of the foil. The rate of such a reaction is given by: 
 

4 4 0 4 0(1 ) (1 )v k X k X−= Θ − − − Θ  (68) 
 
where X = CH/CH,max is the dimensionless H concentration inside the 
metal, i.e. the ratio of the H concentration to the maximal possible H 
concentration, and index 0 indicates the concentration at the electrode 
surface, x = 0, inside the absorbing metal. The dimensionless H 
concentration changes between 0 and 1. Under steady-state conditions, 
defined in this way, the rate of reaction (67) is null, which leads to: 
 

4
0

4 4 (1 )
kX

k k−

Θ
=

Θ + − Θ
 (69) 

 
In order to solve this problem the diffusion of H into the metal must be 
taken into account through the Fick’s second equation:42-48 

2

H 2
X XD
t x

∂ ∂
=

∂ ∂
 (70) 

 
while the H flux at the surface is given by 
 

H H 4
0

x

x

XJ D v
F x =

σ ∂⎛ ⎞= − =⎜ ⎟∂⎝ ⎠
 (71) 
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where H,maxx FCσ =  is the charge corresponding to the saturation of 
metal with hydrogen. Eq. (71) may be solved for the oscillating 
concentration: exp( )X X j t∆ = ω , where X  is the concentration phasor, 
see Part 1 , Eq. (41). The equation obtained is analogous to Eq. (47), 
Part 1; thus 
 

2

H 2
d Xj X D
dx

ω =  (72) 

 
with the boundary conditions: 
 

       x = 0                          H H
x dXD J

F dx
σ

− =  

       x = l                           0dX
dx

=  
(73) 

 
where J is the flux of H. The solution of Eq. (72) is: 
 

e esx sxX A B−= +  (74) 
 
where H/s j D= ω . Taking into account the boundary conditions, one 
obtains: 
 

( ) ( )
H

H

e e
e e

s l x s l x

sl sl
x

F JX
j D

− − −

−
+

=
σ ω −

 (75) 

 
and the surface concentration is 
 

H
0

HH
coth

x

F J jX l
Dj D

⎛ ⎞ω
= ⎜ ⎟

σ ω ⎝ ⎠
 (76) 

 
The oscillating flux is represented by: 
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4 4
0 H 0

H 0
tanhx

H
j v vJ X j D l X

F D X
⎛ ⎞ ⎛ ⎞σ ω ∂ ∂⎛ ⎞= ω = Θ +⎜ ⎟ ⎜ ⎟⎜ ⎟∂Θ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

 (77) 

 
or 
 

' '
H 0 H H H

H
where tanhx jJ X J J j D l

F D
⎛ ⎞σ ω

= = ω ⎜ ⎟
⎝ ⎠

 (78) 

 
Now, knowing the diffusional flux, it is possible to calculate the total 
impedance. As in Section IV, the current is given as: 
 

0 1 2
i r v v

F
∆

= ∆ = ∆ + ∆  (79) 

 
And 0r  by 
 

0 0
0

r rir
F

⎛ ∂ ⎞ ∂⎛ ⎞= = η+ Θ⎜ ⎟⎜ ⎟∂η ∂Θ⎝ ⎠⎝ ⎠
 (80) 

 
Similar reasoning should be applied for d∆Θ/dt, i.e., 
 

1 1
1 2 3 4 1 4

1 1 4 4
0

0

2d j v v v v r v
F dt F

r r v v X
X

σ Θ σ
= ωΘ = − − − = −

⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= Θ + η− Θ − ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂Θ ∂η ∂Θ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 (81) 

 
where r1 = v1 – v2 – 2v3. Equations (77), (80) and (81) can be 
transformed into matrix form as: 
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0 0

1 1 4 1 4

0

'4 4 0
H

0

1 0

0

0
0

ir r
F

r r v vj
F X

v v XJ
X

⎡ ⎤⎡ ⎤∂⎡ ⎤ ∂− ⎢ ⎥−⎢ ⎥⎢ ⎥ η∂η ∂Θ ⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥∂ ∂ ∂ σ ∂ Θ⎢ ⎥− = − − ω − ⎢ ⎥⎢ ⎥⎢ ⎥∂η ∂Θ ∂Θ ∂ η⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥∂ ∂⎢ ⎥ − ⎢ ⎥⎢ ⎥⎢ ⎥ ∂Θ ∂⎣ ⎦ η⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (82) 

 
The system can be simplified because of ( )1 0/ 0r X∂ ∂ = . The solution, 
using Crammer’s rule for /fi η , is given as /fi η  = T1/B where: 
 

0 0

1 1 4 1 4
1

0

'4 4
H

0

0

0

r r

r r v vT j
F X

v v J
X

∂ ∂
−

∂η ∂Θ
∂ ∂ ∂ σ ∂

= − − − ω −
∂η ∂Θ ∂Θ ∂

∂ ∂
−

∂Θ ∂

 (83) 

 

0

1 4 1 4

0

'4 4
H

0

1 0

0

0

r
F

r v vB j
F X

v v J
X

∂
−

∂Θ
∂ ∂ σ ∂

= − − ω −
∂Θ ∂Θ ∂

∂ ∂
−

∂Θ ∂

 (84) 

 
and the admittance is: 
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2
0 1

10

4

1 1

1 4

0
'
H

ˆ

1

f

rF r
riY F

F v
F rj

v
X
J

∂ ⎛ ⎞∂⎛ ⎞
⎜ ⎟ ⎜ ⎟σ ∂Θ ∂η⎛ ∂ ⎞ ⎝ ⎠ ⎝ ⎠= − = − −⎜ ⎟ ∂η ∂η ⎛ ⎞⎝ ⎠ ⎜ ⎟∂ σ ∂Θ⎛ ⎞ ⎝ ⎠ω− +⎜ ⎟σ ∂Θ ⎛ ⎞∂⎝ ⎠

⎜ ⎟∂⎝ ⎠−

 

(85) 

 
or 
 

H
H

1
tanh

f
BY A Dj C E

jj D l
D

= +
ω+ +

+
⎛ ⎞ω

ω ⎜ ⎟
⎝ ⎠

 

(86) 

 
where the parameters A, B and C were defined earlier and D and E are 
defined as: 1 4( / )( / )D F v= σ ∂ ∂Θ  and 4 0( / )( / )xE F v X= − σ ∂ ∂ . This 
equation should be compared with Eq. (49) for the HER; the difference 
is the additional term in the denominator, related to the hydrogen 
adsorption/absorption process. In order to relate to an electric 
equivalent circuit, Eq. (86) should be rearranged into impedance form: 
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2 2

H
2 2

H

H

H

ˆ ˆ1/

1 1
1

coth

1
1 1

'coth

1
1 1

ˆ

f f

ct

p
p

ab

ct

p
p ab W

Z Y

A A A Cj A
B B j l

DB BE
j DA D A D

R
j C

R j l
D

R
j D

R
j C

R R Z

=

= − =
⎛ ⎞ ⎛ ⎞

ω + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎛ ⎞ω⎝ ⎠ ⎝ ⎠ ⎜ ⎟
⎛ ⎞ ⎛ ⎞ ⎝ ⎠+⎜ ⎟ ⎜ ⎟ ω⎝ ⎠ ⎝ ⎠

= + =
ω + +

⎛ ⎞ω
σ ⎜ ⎟

⎝ ⎠+
ω

= +
ω + +

+

 
(87) 

 
where Rct, Rp and Cp were defined in Eq. (52) and other terms are 
defined below (see also Part I, Section IV.2, ref. 1): 
 

2 2

HH

1 1 1; ' ;

'ˆ coth

ab
p p

W

B BE ER
C D C DA D A D

jZ l
Dj D

= − = σ = − =

⎛ ⎞σ ω
= ⎜ ⎟

ω ⎝ ⎠

 (88) 

 
ˆ
WZ  corresponds to the mass-transfer impedance for finite-length 

diffusion and a reflecting interface, see Part 1, Eqs. (98)-(99). The units 
of σ’ are Ω cm3 s-1 and the other elements are expressed in their usual 
units (Ω cm2, F cm-2). For large l, coth(x) → 1 and ˆ

WZ  becomes the 
impedance for semiinfinite diffusion; see Part 1, Eqs. (61) and (63). 
Equation (87) corresponds to the circuit shown in Figure 5. The only 
difference between the HER case and the hydrogen evolution-
absorption mechanism is the presence of the additional parallel branch 
Rab + ˆ

WZ .  
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Figure 5. Equivalent electrical model of the faradaic impedance for hydrogen absorption 
and evolution. 
 
 
 A case of finite diffusion length and transmissive boundary 
conditions has also been considered in the literature.42,43  It represents 
the case of a metallic membrane where, at one side H+ is reduced and H 
enters the metal and on the other side H is oxidized. The only 
difference is that in the mass-transfer impedance function coth is 
replaced by tanh, see also Part 1, Section III.6.  
 When the parameter H/j D lω decreases, that is when frequency 
is very low or the layer thickness is small, coth(x)/x ≈ 1/x2 + 1/3, and 
ˆ

WZ , Eq. (88), then simplifies to: 
 

H

' ' 1ˆ
3W W

W

lZ j R j
D l C
σ σ

= − = −
ω ω

 (89) 

 
with H' /(3 )WR l D= σ , / 'WC l= σ , and the Warburg impedance 
represents a simple RW – CW  connection in series (see Eq. (100), Part I) 
in the equivalent circuit. 

Rct

Cp

Rp

ZW Rab
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 Figure 6 presents an example of the complex plane plots obtained 
in the absence and in the presence of the hydrogen evolution reaction. 
In the case of hydrogen evolution only (without absorption), two 
semicircles (continuous line), related to two time constants, Rct-Cdl and 
Rp-Cp, are observed. In the presence of H absorption (dashed line), 
three semicircles, corresponding to the charge-transfer resistance, Rct, 
absorption resistance, Rab, and adsorption resistance, Rp, together with 
H diffusion effects (part of a straight line at 45°) are observable. When 
the absorption reaction is very fast the semi-circle corresponding to H 
absorption disappears  (dot-dashed line).  Finally,  when  the absorption 

 
Figure 6. Complex plane plots for the hydrogen adsorption, absorption and evolution 
reaction in the case of the reflecting surface; k1 = 2 10-7, k-1 = 2 10-6, k2 = 2 10-6 mol s-1 
cm-2, η = -0.05 V, l = 0.02 cm, DH = 10-7 cm2 s-1, Cdl = 20 µF cm-2, σ1 = 210 µC cm-2, σX 
= 104 F cm-3, Rct = 0.801 Ω cm2, Rp = 1.76 Ω cm2

, Cp = 2.78 10-3 F cm-2; Continuous line 
(--): no hydrogen absorption, (k4 = k-4 = 0), Dashed line (- -): k4 = 2 10-6, k-4 = 10-6 
mol cm-2 s-1, Rab = 0.537 Ω cm2, σ’ = 7.12 10-6 Ω cm3 s-1; Dot-dashed line ( . .− − ): k4 = 2 
10-4, k-4 = 10-4 mol cm-2 s-1, Rab = 5.37 10-3 Ω cm2, σ’ = 7.12 10-6 Ω cm3 s-1.; Dot-dot-
dashed line ( . .. .− − − ): k4 = 2 10-4, k-4 = 10-6 mol cm-2 s-1, Rab = 0.295 Ω cm2, σ’ = 2.15 
10-4 Ω cm3 s-1. 
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reaction is much faster than desorption (dot-dot-dashed line), a 
depressed semicircle is observed. 
 In the presence of hydrogen evolution, the faradaic impedance 
changes from Rct (at ω → ∞) to Rct + Rp at ω → 0. This means that the 
total impedance varies from Rs at ω→∞ to Rs + Rct + Rp at ω = 0. This 
is because, at low frequencies, the mass-transfer impedance becomes 
infinite and the equivalent circuit reduces to that applicable for the 
HER. 
 

2. Absorption of the UPD hydrogen 
 
For the case when the Volmer reaction is followed by the hydrogen 
absorption (e.g. in the case of the hydrogen UPD followed by H 
absorption or reaction at positive overpotentials), the circuit becomes 
simplified because B = -AC, 1

pR− =0 and Rp is infinite. In this case, the 
faradaic impedance is described by: 
 

H

H

1ˆ
1

coth
'

1
1

ˆ

f ct

p

ab

ct

p
ab W

Z R
j C

j l
D

R
j D

R
j C

R Z

= +
ω +

⎛ ⎞ω
⎜ ⎟
⎝ ⎠+ σ
ω

= +
ω +

+

 (90) 

 
where /pC A C= , / 1/ pabR C AD C D= =  and 'σ  reduces to: 

' / / pCE AD E C Dσ = = . Comparison of the complex plane plots for 
hydrogen UPD, and hydrogen UPD followed by H absorption, is 
illustrated in Figure 7. The first semi-circle corresponds to the charge-
transfer resistance, Rct. An additional semi-circle, related to Rab, is 
observed in the case of H absorption. It is followed by the feature 
corresponding to finite-length diffusion, i.e. a line at 45° and a 
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Figure 7. Complex plane plots for the hydrogen UPD (dashed line) and UPD followed by 
hydrogen absorption (continuous line) in the conditions of reflecting boundary. 
Parameters: k1 = 2 10-7, k-1 = 2 10-6, k4 = 2 10-6, k-4 = 10-6 mol cm-2 s-1, l = 0.02 cm, η = -
0.05 V vs. adsorption maximum, other parameters as in Figure 6. Calculated parameters: 
Rct = 0.855 Ω cm2, Rab = 0.776 Ω cm2, Cp = 1.98 10-3 F cm-2. 

 
capacitive line (vertical line). In the absence of the absorption reaction 
the semi-circle connected with Rct is followed by one arising from a 
pseudocapacitance. 
 Comparison of the complex plane plots in the case of the H 
adsorption/absorption processes, for the case of reflecting and 
transmissive conditions is shown in Figure 8. For the case of 
transmissive conditions, it was assumed that the concentration of 
adsorbed H at x = l is equal to zero, i.e. the applied potential is so 
positive that all the H diffusing across the membrane is immediately 
oxidized. 
 Further simplification is achieved when the resistance of H 
absorption is fast. In this case, 0abR = , reaction (68) is in equilibrium 
and 'σ  reduces to: 
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Figure 8. Complex plane plots for the hydrogen adsorption/absorption reaction obtained 
in the case of reflective (dashed line) and transmissive (continuous line) conditions; 
parameters as in Figure 7. 
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 (91) 

 
where K4 = k4/k-4 which reduces to 2

1 4' / xKσ = σ Θ σ  for large values 
of the equilibrium constant, K4. An example of the complex plane plot 
obtained for such a case is shown in Figure 9. 
 
 

3. Spherical diffusion 
 
 Very often H absorption is studied on AB5 or AB2 type alloy 
electrode materials. They form powders for which a finite-length 
spherical diffusion tratment must be used.48-50  In such cases, the H 
diffusion equation (70) must be modified into: 
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Figure 9. Complex plane plots for the hydrogen adsorption/absorption reaction in the 
case of reflective (dashed line) and transmissive (continuous line) conditions and fast 
absorption, k4 = 2 10-4, k-4 = 10-4 mol cm-2 s-1, other parameters as in Figure 8. 
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2X X XD

t r rr
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 (92) 

 
This equation may be solved using the substitution: u = X r.  For the 
oscillating concentration, X ,  
 

2

H 2
u uD
t x

∂ ∂
=

∂ ∂
   or  

2

H 2
d uj u D
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ω =  (93) 

 
is obtained for the following boundary conditions: 
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0

0 H H
d
d

0 0

x

r

Xr r J D
F r

r u
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= = −

= =

 (94) 

 
The solution of Eq. (94) is: 
 

H
e esr sr ju A B s

D
− ω

= + =  (95) 

 
The second boundary condition gives A = -B. Application of the first 
boundary condition to the solution for X  gives: 
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 (96) 

 
Then the flux at the electrode surface is given by: 
 

H
H 0 H 0

H 0
cothx j DJ X j D r

F D r
⎡ ⎤⎛ ⎞σ ω

= ω −⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 (97) 

 
and the Warburg impedance in Eq. (87) is: 
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( ) ( )HH 0 0H 0 0H 0
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coth 1coth

WZ Dj D sr srj D r rD r

σ σ
= =

⎛ ⎞ω −⎡ ⎤ω − ⎣ ⎦⎜ ⎟
⎝ ⎠

 
(98) 

 
Spherical diffusion changes the shape of the diffusional part of the 
impedance behavior. Comparison of the results for linear and spherical 
diffusion is illustrated in Figure 11. 
 
 It is interesting to compare relative contributions of ZW, Zp (equal 
to the parallel connection of CP and ZW) to the total impedance, Ztot. 
Such a comparison is presented in Figure 11. When the parameter 

0 H 0/sr j D r= ω is small, that is when frequency is sufficiently low or 
the particle radius is small, 1/(x coth(x)-1) simplifies to 3/x2+1/5 and 
ˆ
WZ , Eq. (98), then becomes simplified to: 

 

0

H 0

'1 1 3 'ˆ
5W w

W

r
Z R

j C D j r
σ σ

= + = +
ω ω

 (99) 

 
This represents a RW-CW behavior of the Warburg impedance, with 

H0' / 5WR r D= σ  and 0 / 3 'WC r= σ . Such behavior is different from 
that observed for thin, planar reflective electrodes, Eq. (89), where ZW 
reduces to RW –CW  at low frequencies. 
 Absorption of H has been studied at Pd both in transmissive42,43 
and reflective46,47,51,52 conditions, and at various hydrogen-absorbing 
alloys such as: LaNi5,53-55 mishmetals,49, 56-58 and at bilayers.44,59  Not 
all authors have used the correct equation developed for the H 
adsorption-absorption process. An example of the impedance curves 
obtained for a Pd electrode in the case of reflective conditions is shown 
in Figure 12. It displays features similar to those simulated in Figure 9 
or 7. For a very thin Pd layer, no diffusional feature (straight line at 45° 
in the complex plane plots) was observed. In this case, the Warburg 
impedance was reduced to a RW-CW connection, Eq. (89). 
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Figure 10. Complex plane plots for finite length linear and spherical diffusion. Parameter 
used: Cdl = 10-4 F, Cp = 3 10-3 F, σ = 0.07 Ω s-1/2, l = r0 = 0.005 cm, Rct = 70 Ω, Rs = 30 Ω, 
Rp = Rab = 0. 

 
 
 An experimental impedance complex plane plot for the case of 
transmissive conditions is shown in Figure 13. In such a case, the 
impedance at low frequencies becomes a real value connected with the 
transfer of H across the membrane under such conditions. 
 Hydrogen absorption and phase transitions are accompanied by 
volume changes leading to a self-induced mechanical stress.60  These 
effects were taken into account by Żółtowski61 in description of the 
impedance behavior for such conditions. 
 

4. Transfer functions approach 
 
 Hydrogen absorption in metals may be studied for the conditions 
of diffusion across a metallic membrane (e.g. Pd, Fe). This process is 
shown schematically in Figure 14. In this case, using a Devanathan-
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Figure 11. Comparison of Warburg impedance, ZW, Zp = 1/(jωCp +1/ZW) and the total 
impedance, Ztot, for a spherical diffusion of hydrogen. parameters as in Figure 10. 

 
 
Stachurski cell,62 it is possible to study other complex functions, 
different from impedance, using the so-called transfer function 
approach63-65. In general, response of the electrical system, R(t), 
depends on the perturbation, P(t), applied to the system. An equation:  
 

{ }( ) ( )R t L P t=  (100) 
 
can be written, where L is an operator characterizing the system. If the 
system consists of linear elements, the operator L is linear. 
Electrochemical systems, are, however, fundamentally nonlinear but 
they may be linearized for conditions of small perturbation, P(t). For an 
arbitrary applied signal, the output can be related to input by taking 
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Figure 12. Complex plane plots obtained on Pd electrode in 0.1 M H2SO4 at η0 = 0.15 V 
at a 250 nm Pd film deposited on Au and on 50 µm Pd membrane immersed in the 
solution in the case of reflective conditions. Points – experimental, lines CNLS 
approximations.66  

 
 
Laplace transforms of the perturbation and the signal. A transfer 
function, called the impedance, Z(s), is defined as (see Eq. (6), Part I): 
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 (101) 

 
where L  is the Laplace transform operator. The transfer function 
characterizes response of the system to the applied perturbation. Its 
knowledge permits prediction of the system response. 
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Figure 13. Complex plane plots obtained on Pd membrane (l = 50 µm) in the case of 
transmissive conditions, η0 = 90 mV, ηl = 280 mV in 0.1 M H2SO4; points – 
experimental, line – CNLS approximation.66 

 
 

 
 

 
 

 
 

 
 

 
 
 
 
 
 
 

 
Figure 14. Hydrogen transfer across the Pd membrane; reduction current i0, oxidation 
current il, hydrogen flux entering J0 and leaving Jl the membrane, X0 and Xl dimensionless 
concentrations of hydrogen in membrane. 
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 In ac techniques, the perturbation is a periodic function (sin, cos). 
In order to resolve the problem, one can use the Fourier transform 
analog of Eq. (100), viz 
 

,
ˆ ˆ ˆ( ) ( ) ( )R PR H Pω = ω ω  (102) 

 
where ˆ( )P ω  and ˆ( )R ω  are the Fourier transforms of the perturbation 
P(t) and the response R(t), and ,

ˆ ( )R PH ω  is the transfer function relating 
response to the perturbation.65-  68  In the particular case when 
ˆ( ) ( )P Eω = ω  and ˆ( ) ( )R iω = ω , transfer function 

,
ˆ ˆ ˆ ˆ( ) ( ) / ( ) ( ) / ( ) ( )R PH R P i E Yω = ω ω = ω ω = ω , called the admittance. Of 

course, the inverse of this function is the impedance. In general, various 
transfer functions may be defined, e.g. mass response of conducting-
polymer, ( )m ω , to the applied ac perturbation, ( )E ω , the so-called 
electrogravimetric transfer function: ( ) / ( )m Eω ω .69, 70 Other transfer 
functions include the electro-optical transfer function i.e. the transfer 
function for the relation between between current and reflectance, the 
electrocoulometric transfer function, i.e. transfer function between ring 
and disk currents, and electrohydrodynamical impedance where the 
perturbation is a modulation of the angular velocity of the rotating disk 
electrode, and also magnetohydrodynamical impedance,68 etc. 
 In the case of a metallic membrane, “ordinary” transfer function 
relating current i  to the applied potential E  is an admittance 

0 00 , 0
ˆ

j Ei Y E= , where index 0 denotes parameters at x = 0, i.e. at the entry 
side of a membrane. However, one can also measure H transfer across 
the membrane, i.e. currents measured at both sides of the membrane 

0, 0
ˆ

ll i ii H i=  where index l indicates the exit side. It should be noticed 
that 

0,
ˆ

li iH  is dimensionless. Another possible transfer function is: 

0, 0
ˆ

ll i Ei H E=  which has the units of impedance and characterizes the 
current measured on the exit side in a response to a sinusoidal potential 
perturbation on the entry side. Also there is 

0,
ˆ

lE EH  which is a 
potentiometric transfer function describing variations of the potential at 
the exit side (il equals to zero) under perturbation at the entry side. It 
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should be stressed that ,
ˆ

l lE iH  is always zero or infinity depending on 
the constant-potential or constant-current conditions. The above 
defined transfer functions may be measured using a frequency response 
analyzer.  
 We can now determine transfer functions for the case of H 
permeation. Let it be supposed that on the entry side a sinusoidal 
perturbation is superimposed on a dc potential and, at the exit side, the 
applied potential is sufficiently positive that H arriving from across the 
membrane is immediately oxidized, Figure 14. In this case we have to 
solve the diffusion equation, Eq. (72), with the following boundary 
conditions: 
 

00

0

x X X

x l X

= =

= =
 (103) 

 
The solution is: 
 

( )
( )0

sinh
sinh

s l x
X X

sl
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The flux of H in the membrane is given by: 
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X X s l xXJ x D D sX
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The fluxes at x = 0 and x = l are: 
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Hydrogen (H) concentrations and fluxes at x = 0 and x = l are related by 
the following equation:64 
 

H0

H0

cosh( ) sinh( ) /
sinh( ) cosh( )

l

l

sl sl sDX X
sD sl slJ J

⎡ ⎤ ⎡ ⎤⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥
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 (107) 

 
The transfer function for fluxes, calculated from Eq. (106), is: 
 

0,
0

1ˆ
cosh( )l

l
J J

JH
J sl

= =  (108) 

 
This function may be separated into a real and imaginary part and a 
new expression is obtained: 
 

0,
cos( )cosh( ) sin( )sinh( )ˆ 2

cos(2 ) cosh(2 )lJ J
jH ζ ζ − ζ ζ

=
ζ + ζ

 (109) 

 
where H/ 2 Re( )D l slζ = ω = . The transfer function 0,ˆ

lJ JH  is 
dimensionless and normalized. 
 A complex plane plot illustrating the flux transfer function is 
shown in Figure 15 and the dependence of the real and imaginary parts 
of this transfer function as a function of the logarithm of the frequency 
is displayed in Figure 16.  
 However, the H flux 0J  is not measurable; only the currents on 
both sides of the membrane may be determined; the total current on the 
entry side is  tot toti FJ=  and that at the exit side is l li FJ=   (if the 
only reaction at x = l is that of H oxidation). The total current flowing 
to the membrane on the entry side consists of that for double-layer 
charging, dli , and the faradaic, fi , currents: tot dl fi i i= + . Then, from 
purely electrical analysis of the equivalent circuit: 
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Figure 15. The transfer function 

0,
ˆ

lJ JH  complex plane plot for H permeation across the 

membrane, l = 10 µm in thickness, assuming DH = 10-7 cm2 s-1. 
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In the same way one can find the ratio of the current flowing through 
the Rab- ˆ

WZ  branch, Figure 5,  i.e. the current entering the membrane, to 
the faradaic current, 0 / fi i : 
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Figure 16. Real and imaginary parts of the transfer function 

0,
ˆ

lJ JH  as functions of the 
logarithm of the angular frequency; parameters as in Figure 15. 
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where H

ˆ ( / ) tanh( ) /WZ CE AD sl j D= ω  Taking into account Eqs. 
(108), (110) and (111) the transfer function for currents can be obtained 
as: 
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Figure 17. Complex plane plot of the experimental transfer functions 0,ˆ

li iH  at η0 = 90 
mV and ηl = 480 mV for hydrogen transfer across the Pd membrane, l = 50 µm, in 0.1 M 
H2SO4, points – experimental, line - approximation.66 
 
 
An example of the current transfer function for H transfer across a Pd 
membrane is shown in Figure 17. Because the frequencies studied were 
below 0.2 Hz, only the first term in Eq. (112), containing cosh(sl) was 
important, that is Eq. (108) was sufficient to approximate the results.  
 In a similar way it is possible to determine the transfer function of 
the exit current to the applied potential, /li η . It has the dimensions of 
admittance and can be obtained from Eq. (112) as: 
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( ) ( )
1

ˆ ˆ ˆcosh( ) 1 1
l

dl f p ab W tot

i
sl j C Z j C R Z Z

= −
η ⎡ ⎤+ ω + ω +⎣ ⎦

 

 
Because the membrane thickness is typically ≥ 20 µm, only diffusional 
effects are observed at very low frequencies. 
 Hydrogen transfer functions have been studied for iron65, 71 and 

palladium.72 
 It should be added that intercalation of metal ions into solid 
matrices, e.g. in Li-ion electrode systems, may be formally described 
by equations similar to those for electrochemical absorption of H. 
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