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I. INTRODUCTION 

 Electrochemical Impedance Spectroscopy (EIS) or ac impedance methods have seen 
tremendous increase in popularity in recent years. Initially applied to the determination of the 
double-layer capacitance1-4 and in ac polarography,5-7 they are now applied to the 
characterization of electrode processes and complex interfaces. EIS studies the system response 
to the application of a periodic small amplitude ac signal. These measurements are carried out at 
different ac frequencies and, thus, the name impedance spectroscopy was later adopted. Analysis 
of the system response contains information about the interface, its structure and reactions taking 
place there. EIS is now described in the general books on electrochemistry,8-17 specific books18,19 
on EIS, and there are also numerous articles and reviews.6,20-31  It became very popular in the 
research and applied chemistry. The Chemical Abstract database shows ~1,500 citations per year 
of the term "impedance" since 1993 and ~1,200 in earlier years and ~500 citations per year of 
"electrochemical impedance". Although the term "impedance" may include also non-
electrochemical measurements and "electrochemical impedance" may not include all the 
electrochemical studies, the popularity of this technique cannot be denied.  

However, EIS is a very sensitive technique and it must be used with great care. Besides, 
it is not always well understood. This may be connected with the fact that existing reviews on 
EIS are very often difficult to understand by non-specialists and, frequently, they do not show 
the complete mathematical developments of equations connecting the impedance with the 
physico-chemical parameters. It should be stressed that EIS cannot give all the answers. It is a 
complementary technique and other methods must also be used to elucidate the interfacial 
processes.  

The purpose of this review is to fill this gap by presenting a modern and relatively 
complete review of the subject of electrochemical impedance spectroscopy, containing 
mathematical development of the fundamental equations. 
 

1. Response of Electrical Circuits 
(i) Arbitrary Input Signal 

Application of an electrical perturbation (current, potential) to an electrical circuit causes 
the appearance of a response. In this chapter, the system response to an arbitrary perturbation 
and, later, to an ac signal, will be presented. Knowledge of the Laplace transform technique is 
assumed, but the reader may consult numerous books on the subject. 

First, let us consider application of an arbitrary (but known) potential E(t) to a resistance 
R. The current i(t) is given as: i(t) = E(t)/R. When the same potential is applied to the series 
connection of the resistance R and capacitance C, the total potential difference is a sum of 
potential drops on each element. Taking into account that for a capacitance E(t) = Q(t) /C, where 
Q is the charge stored in a capacitor, the following equation is obtained: 

E t i t R
Q t

C
i t R

C
i t dt

t
( ) ( ) ( )= + = + ∫( )

( ) 1

0
 

(1)

This equation may be solved using either Laplace transform or differentiation techniques. 32-34 
Differentiation gives: 

di t
dt

i t
RC R

dE t
dt

( ) ( ) ( )
+ =

1  (2) 

which may be solved for known E(t) using standard methods for differential equations.  
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The Laplace transform is an integral transform in which a function of time f(t) is 
transformed into a new function of a parameter s called frequency, f s( )  or F(s), according to: 

L [f(t)] = f s( )  = F (s) = −∫
∞

f t st dt( ) exp( )
0

 (3) 

The Laplace transform is often used in solution of differential and integral equations. In general, 
the parameter s may be complex, s = ν +jω, where j = −1 , but in this chapter only the real 
transform will be considered, i.e. s = v. Direct application of the Laplace transform to eqn. (1), 

taking into account that L ( i t dt
t

( )
0
∫ ) = i(s)/s, gives: 

E s i s R i s
sC

( ) ( ) ( )
= +  (4) 

which leads to: 

i s E s R
sC

( ) ( ) /= +⎛
⎝
⎜

⎞
⎠
⎟

1  (5) 

The ratio of the Laplace transforms of potential and current, E(s)/i(s) is expressed in the units of 
resistance, Ω, and is called impedance, Z(s). In this case: 

Z s E s
i s

R
sC

( ) ( )
( )

= = +
1  (6) 

The inverse of impedance is called admittance, Y(s) = 1/Z(s). They are transfer functions which 
transform one signal, e.g. applied voltage, into another, e.g. current. Both are called immittances. 
Some other transfer functions are discussed in refs. 18, 35 and 36. It should be noticed that the 
impedance of a series connection of a resistance and capacitance, eqn. (6), is a sum of the 
contributions of these two elements: resistance, R, and capacitance, 1/sC. 
 For the series connection of a resistance, R, and inductance, L, the total potential 
difference consists of the potential drop on both elements: 

E t i t R L di t
dt

( ) ( ) ( )
= +  (7) 

Taking into account that L [di(t)/dt] = s i(s) - i(0+), and taking i = 0 at t = 0, one obtains the 
current response in the Laplace space: 

i s E s R sL( ) ( ) / ( )= +  (8) 
In both cases considered above the system impedance consists of the sum of two terms, 
corresponding to two elements: resistance and capacitance or inductance.  
 In general, one can write contributions to the total impedance corresponding to the 
resistance as R, the capacitance as 1/sC and the inductance as sL. Addition of impedances is 
analogous to the addition of resistances. Knowledge of the system impedance allows for an easy 
solution of the problem.  
 For example, when a constant voltage, E0, is applied at time zero to a series connection of 
R and C, the current is described by eqn. (5). Taking into account that the Laplace transform of a 
constant L (E0) = E0 /s, one gets: 

i s
E

s R sC
E
R s RC

( )
( / ) /

=
+

=
+

0 0

1
1

1
 (9) 

Inverse transform of (9) gives the current relaxation versus time: 
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i t
E
R

t RC( ) exp( / )= −0  (10)

The result obtained shows that after the application of the potential step, current initially equals 
E0/R and it decreases to zero as the capacitance is charged to the potential difference E0.  
 Similarly, application of the potential step to a series connection of R and L produces 
response given by eqn. (8) which, after substitution of E(s) = E0 /s, gives: 

i s
E

s R sL
E
L s s R L

E
R s s R L

( )
( ) ( / ) /

=
+

=
+

= +
+

⎛
⎝
⎜

⎞
⎠
⎟

0 0 01 1 1  (11)

Inverse transform gives the time dependence of the current: 

i t
E
R

Rt
L

( ) exp= − −⎛
⎝
⎜

⎞
⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥

0 1  (12)

The current starts at zero as the inductance constitutes infinite resistance at t = 0 and it increases 
to E0/R as the effect of inductance becomes negligible in the steady-state condition. 
 In a similar way other problems of transient system response may be solved. More 
complex examples are presented, e.g., in refs. 33-34. It should be added that an arbitrary signal 
may be applied to the system and if the Laplace transforms of the potential and current are 
determined, e.g. by numerical transform calculations, the system impedance is determined. In the 
Laplace space the equations (e.g. eqns. (9) and (11)) are much simpler than those in the time 
space (e.g. eqns. (10) and (12)) and analysis in the frequency space s allows for the 
determination of the system parameters. This analysis is especially important when an ideal 
potential step cannot be applied to the system because of the band-width limitations of the 
potentiostat.37 In this case it is sufficient to know i(t) and the real value of the potential applied to 
the electrodes by the potentiostat, E(t), which allows numerical Laplace transformation to be 
carried out and the system impedance obtained. 
 In the cases involving more time constants, i.e. more than one capacitance or inductance 
in the circuit, the differential equations describing the system are of the second or higher order 
and the impedances obtained are the second or higher order functions of s. 
 
(ii) Alternating Voltage (av) Input Signal 
 In the EIS we are interested in the system response to the application of a sinusoidal 
signal, e.g.: E = E0 sin(ωt), where E0 is the signal amplitude, ω = 2πf is the angular frequency, 
and f is the av signal frequency. This problem may be solved in different ways. First, let us 
consider application of an av signal to a series R-C connection. Taking into account that the 
Laplace transform of the sine function L [sin(ωt)] = ω/(s2 + ω2)], use of eqn. (5) gives: 

i s
E

s R sC
E

R s s RC
( )

/ /
=

+ +
=

+ +
0

2 2
0

2 2

1
1

1 1
1

ω
ω

ω
ω

 (13)

Distribution into simple fractions leads to: 

i s
E

R RC s RC
s

s RC s RC
( )

[ ( / ) ] /
=

+ +
+

+
−

+
⎡

⎣
⎢

⎤

⎦
⎥

0
2 2

2
2 2 2 21

1
1ω

ω
ω

ω

ω

ω

ω
 (14)

and the inverse Laplace transform, taking L -1 [s/(s2+ω2) = cos ωt, gives: 

i t
E

R RC
t

RC
t

RC
t RC( )

[ ( / ) ]
sin( ) cos( ) exp( / )=

+
+ − −⎡

⎣⎢
⎤
⎦⎥

0
2 2

2
1ω

ω ω
ω

ω
ω

 (15)
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The third term in eqn. (15) corresponds to a transitory response observed just after application of 
the av signal and it decreases quickly to zero. The steady-state equation may be rearranged into a 
simpler form: 

( )

( ) ( )i t
E

R
RC

t
RC

t( ) sin cos=

+
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

+⎡
⎣⎢

⎤
⎦⎥

0

21
1

1

ω

ω
ω

ω  (16)

and by introducing tan ϕ = 1/ωRC the following form is found: 

i t E

R
C

t E
Z

t( )

( )

sin( )
| |

sin( )=
+

+ = +0

2
2

0

1
ω

ω ϕ ω ϕ  (17)

where ϕ is the phase-angle between current and potential, ϕ = arctan(1/ωRC). It is obvious that 
the current has the same frequency as the applied potential but is phase-shifted by the angle ϕ. 
The value |Z| has units of resistance; it is the length of a vector obtained by addition of two 
perpendicular vectors: R  and 1/ωC.  
 

2. Impedance of Electrical Circuits 
 In order to simplify the calculations of impedances, the result obtained for the periodic 
perturbation of an electrical circuit may be represented using complex notation. In the latter 
example the system impedance, Z(jω), may be represented as:  

Z j Z Z jZ R
j C

R j
C

( ) ' ' 'ω
ω ω

≡ = + = + = −
1 1

 
(18)

and the real and imaginary parts of the impedance are: Z’ = R and Z” = -1/ωC, respectively. It 
should be noted that the complex impedance Z(jω), eqn. (18), may be obtained from Z(s), eqn. 
(6), by substitution: s = jω. In fact, this is the imaginary Laplace transform. The modulus of 
Z(jω), eqn. (17), equals: 

|Z| = ( ' ) ( " )Z Z2 2+  = R C2 21+ ( / )ω  (19)

and the phase-angle between the imaginary and real impedance equals ϕ ≡ arg( Z
^

) = 
atan(-1/ωRC). It should be noticed that the sign of ϕ, between potential and current, described 
above for the impedances, is different from that found between current and potential, eqn. (17). It 
may be recalled that in complex notation: 

[ ]Z j Z j Z j( ) | |exp( ) | | cos( ) sin( )ω ϕ ϕ ϕ= = +  (20)
Analysis of eqn. (17) indicates that the current represents a vector of the length i0 = E0 /|Z| which 
rotates with the frequency ω. Current and potential are rotating vectors in the time domain, as 
represented in Figure 1a. Using complex notation they may be described by: 

E E j t= 0 exp( )ω  and  i i j t= +0 exp[ ( )]ω ϕ  (21)

These vectors rotate with a constant frequency ω and the phase-angle, ϕ, between them stays 
constant. Instead of showing rotating vectors in time space it is possible to present immobile 
 
Figure 1.  
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vectors in the frequency space, separated by the phase-angle ϕ. These vectors are called phasors; 
they are equal to ~E  = E0 and ~I  = I0 exp(jϕ), where the initial phase shift of the potential was 
assumed to be zero, see Figure 1b. 
 In general, the complex impedance may be written for any circuit by taking R for a 
resistance, 1/jωC for a capacitance and jωL for an inductance, and applying Ohm’s and 
Kirchhoff’s laws to the connection of these elements. Several examples of this method are 
presented below. 
 
(i) Series R-C Circuit 
 In the case of a series connection of the resistance and capacitance the impedance is 
given by: Z(jω) = R + 1/jωC = R - j/ωC. The result may be represented graphically using two 
types of plots: complex plane (also known as Argand or Nyquist plots) and Bode plots. The 
complex plane plot is a plot of Z” versus Z’, that is, the imaginary versus the real components, 
plotted for various frequencies. A complex plane plot for a series connection R-C (R = 100 Ω, C 
= 2×10-5 F) circuit is shown in Figure 2. It consists of a straight line perpendicular to the real 
axis. Other types of graphs are Bode plots i.e. log |Z| (magnitude) and phase-angle, ϕ, versus log 
ω. They are also shown in Figure 2. The graph of log |Z| versus log ω, Figure 2d, contains one 
breakpoint or corner frequency. This point corresponds to the system characteristic frequency ω 
= 1/RC = 500 s-1 or a time constant τ = RC = 0.002 s. The phase-angle changes from 90o at low 
frequencies to 0 at high frequencies. This circuit corresponds to an ideally polarized electrode in 
solution, e.g. a mercury electrode - supporting electrolyte solution. 
 
Figure 2. 
 
 The complex plane plots may also be obtained for admittances. Admittance for the series 
R-C connection equals: 

Y j
Z j R j

C

R

R
C

j

C R
C

( )
( )

ω
ω

ω ω
ω

ω

= =
−

=
+

+
+

⎛
⎝
⎜

⎞
⎠
⎟

1 1
1 12

2 2
2

2 2

 (22)

It represents a semi-circle on the complex plane plot, Figure 2c. It should be stressed that for 
capacitive circuits the imaginary impedance is always negative and the imaginary admittance is 
positive. 
 
(ii) Parallel R-C Circuit 
 For the parallel R-C connection the total admittance equals: Y j R j C( ) /ω ω= +1  such 
that: 

Z j
R j C

R
j RC

R
R C

j R C
R C

( )
/

ω
ω ω ω

ω

ω
=

+
=

+
=

+
−

+

1
1 1 1 12 2 2

2

2 2 2  
(23)

There are two limits of the impedance: ω = 0, Ẑ  = R and ω → ∞ , Ẑ  = 0. The corresponding 
complex plane and Bode plots, for the same values of R and C elements as used in the series R-C 
model above, are shown in Figure 3. The Nyquist plot shows a semicircle of radius R/2 and the 
center on the real axis, and the frequency at the semicircle maximum equal to: ω = 1/RC. The 
circuit’s characteristic breakpoint frequency (inverse of the characteristic time constant), as 
observed in the impedance Bode graph, is the same as for the series and the parallel R-C circuits. 
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The complex plane admittance plot represents a straight line parallel to the imaginary axis, 
Figure 3c, which is similar to the impedance complex plane plot for the series R-C connection.  

 

Figure 3. 

(iii) Series: Rs + Parallel R-C Circuit 
 Finally, impedance of the circuit shown in Figure 4, consisting of a series connection of 
the resistance Rs with the parallel connection of Rct-Cdl, is given as: 
 

Figure 4.  

 

Z j R
R j Cs

ct dl
( )

/
ω

ω
= +

+
1

1
 

(24)

The corresponding complex plane and Bode plots are also shown in Figure 4 for Rct = 100 Ω, Rs 
= 10 Ω and Cdl = 20 µF. The main difference between circuits in Figure 3 and Figure 4 is 
connected with the fact that in the latter circuit, at ω → ∞, Z → Rs and ϕ → 0, due to the 
presence of Rs, and for ω → 0  Z → Rs + Rct. The frequency corresponding to the maximum of 
Z’’ is still equal to ω = 1/RctCdl = 500 s-1. In addition, the Bode log |Z| plot shows that there are 
two breakpoints (bends). For comparison, the admittance complex plane plot is also shown in 
Figure 4c. 
 

3. Interpretation of the Complex Plane and Bode Plots 
 Complex plane (Nyquist) plots are the most often used in the electrochemical literature 
because they allow for an easy prediction of the circuit elements. However, they do not show all 
details; for example, exactly the same Nyquist impedance plots, shown in Figure 3 and Figure 4, 
may be obtained for different values of the capacitance C. The only difference between them will 
be the fact that the points on the semicircle would correspond to different frequencies. 
Nevertheless, Nyquist plots allow for an easy relation to the electrical model. On the other hand 
Bode plots contain all the necessary information. That is why Bode plots are mainly used in the 
circuit analysis. The Bode magnitude plots may be easily predicted from the circuit impedance.33 
Let us consider the circuit shown in Figure 4a. Its impedance is presented by eqn. (24). This 
equation may be rearranged into another form: 

( )( ) ( )Z R R
j

R R C
R R

j R C
R R

j
js ct

s ct dl
s ct

ct dl
s ct= +

+
+

⎛
⎝
⎜

⎞
⎠
⎟

+
= +

+
+

1

1
1
1

2
1

ω

ω
ωτ
ωτ

 

(25)

where τ1 and τ2 are the Bode characteristic time constants. From eqn. (25) log(|Z|) is easily 
evaluated: 

log(| | ) log(| |) log(| |) log(| |)Z R R j js ct= + + + − +1 12 1ωτ ωτ  (26)

In order to construct asymptotic lines in the Bode magnitude plot, the contribution of each term 
in eqn. (26) can be considered independently and then their sum may be easily obtained. Each 
term log(|1+jωτ|) has two limits: when ωτ<<1, i.e. ω<<1/τ, log(|1+jωτ|) = 0 and when ωτ>>1, 
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log(|1+jωτ|) = log τ +log ω, which correspond to a straight line with a slope of one and intercept 
log ω = -log τ. 
 The graphs corresponding to these lines are shown in Figure 5. The break-point 
frequencies in the Bode magnitude plot, Figure 4d and Figure 5, are ω1 = 1/τ1 = 500 s-1 and ω2 = 
1/τ2 = 5500 s-1. The continuous line is the sum of the three asymptotes. In this way Bode 
magnitude graphs may be constructed for other circuits. 
 The Bode phase-angle graph is shown in Figure 4e. The phase-angle is described by: 

ϕ
ω

ω
= =

+ +

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

atan( ''/ ' ) atan
( )

Z Z
R C

R R R C R

ct dl

s ct ct dl s

2

2  
 

(27)

It can be shown that this function has a maximum at: 

ω =
+1

R C
R R

Rct dl
S ct

s
 (28)

which, in this case, equals ω = 1658 s-1. It should be noticed that the maximum of the phase-
angle is different from the maximum of the imaginary part of the impedance, corresponding to 
the maximum of the semicircle at Z’ = Rs + Rct/2 at ω = 1/RctCdl. The plots of Z' and Z'' (or their 
logarithms) as a function of log ω are also sometimes shown in the literature. 
 

Figure 5. 

II. IMPEDANCE MEASUREMENTS 
 Dc transient response of electrochemical systems is usually measured using potentiostats. 
In the case of EIS an additional perturbation is added to the dc signal in order to obtain the 
frequency response of the system. The system impedance may be measured using various 
techniques: 
1) ac bridges 
2) Lissajous curves 
3) phase sensitive detection (PSD) 
4) frequency response analysis (FRA) 
5) fast Fourier transform (FFT)  

Because older techniques were described in detail in refs. 18, 19, 26, 28, 30 and 31, this chapter 
will be focused on the last three techniques. 
 

1. Ac Bridges 
 This technique was the first used to measure the double-layer parameters (principally of 
the dropping mercury electrode) and, later, to measure the electrode impedance in the presence 
of a faradaic reaction to determine the kinetics of electrode processes. The use of ac bridges 
provides a very good precision of measurements. It has been described in detail in refs. 18, 26, 
28 and 38. The ac bridge with potentiostatic control may also be used. Although this method is 
slow, because bridge compensation must be carried out at each frequency manually, it is still 
used, principally in precise double-layer measurements.39-41  
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2. Lissajous Curves 
 Recording of the applied av potential and the resulting ac current on a twin-beam 
oscilloscope produces so-called Lissajous curves (in this case an ellipse)18,28,30 which may be 
used for the determination of the impedances. Because of the frequency limitations and 
sensitivity to noise, this technique is not currently used in electrochemical measurements. 
 

3. Phase Sensitive Detection (PSD) 
 Phase sensitive detection is used in lock-in amplifiers, which are interfaced with 
potentiostats.42,43  Only a general idea of these measurements will be presented here. In this 
method the measured signal, E1, proportional to the ac current from the potentiostat, is: 

E E ta1 1 1= +, sin( )ω ϕ  (29)
where E1,a is the signal amplitude and ϕ1 is the phase shift, is multiplied by a square-wave signal 
of the same angular frequency ω. The square-wave signal may be represented as a Fourier series: 

( )[ ]E
n

n t
n

2 2
0

4 1
2 1

2 1=
+

+ +∑
=

∞

π
ω ϕsin  

(30)

where n is an integer and the amplitude of the square signal is taken as unity. The resulting signal 
E1×E2 equals: 

( ) ( ) ( )[ ]

( ) ( )[ ] ( ) ( )[ ]{ }

( ) ( )

( ) ( )

( )

E E
E

n
t n t

E
n

n t n n t n

E
t

t t

t

n

n

1 2
1

1 2
0

1
1 2 1 2

0

1

1 2 1 2

1 2 1 2

1 2

4
2 1

2 1

2
2 1

2 2 1 2 2 2 1

2
2

1
3

2 3
1
3

4 3

1
5

4 5
1

=
+

+ + + =∑

=
+

− + − + − + + + + =∑

=

− − + +

+ − + − − + +

+ − + − −

=

∞

=

∞

π
ω ϕ ω ϕ

π
ω ϕ ϕ ω ϕ ϕ
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⎪
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(31)

It contains one time independent component, depending on the phase difference of two signals, 
and is proportional to the amplitude of the measured ac signal. It reaches a maximum when the 
phase difference of the two signals being mixed is zero. The output signal is subsequently 
applied to a low-pass filter which averages the signal components having frequencies above the 
filter cut-off frequency. It produces a dc signal proportional to the amplitude. Because the 
average value of periodic functions is equal to zero, the average value of E1E2, equation (31), 
equals: 

( ) ( )Average E E
E

1 2
1

1 2
2

= −
π

ϕ ϕcos  
(32)

The disadvantage of the lock-in technique is that it retains contributions of the harmonic 
frequencies (2n+1)ωref, if they are present in the input signal (e.g. harmonics, noise), although 
their influence is attenuated by 1/3, 1/5, 1/7, etc. with increasing n. For example, when the 
frequency in eqn. (29) is three times the reference frequency in eqn. (30), the obtained average 
signal: 

( )Average E E
E

( ) cos1 2
1

1 2
2
3

3= −
π

ϕ ϕ  
(33)
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is attenuated three times. If the reference signal is synchronized with the applied signal (they are 
both generated from the same source), ϕ2 is equal to zero and the expressions become simplified. 
 A schematic diagram of a lock-in amplifier is shown in Figure 6. The measured signal is 
mixed with the reference square-wave signal of the same frequency and the resulting signal goes 
through a low-pass filter producing an average of all components. The phase shifter allows for 
precise adjustment of the reference phase in order to zero the phase difference ϕ1 - ϕ2. In two-
phase lock-in amplifiers, the measured signal is mixed with the reference signal to obtain the 
in-phase component and, additionally, with the reference signal shifted by π/2 to resolve the 
imaginary component. 
 Lock-in amplifiers operate in the frequency range from 0.5 (lower limit up to 10 Hz, 
depending on the manufacturer) to ~105 Hz with a precision of 0.1 to 0.2%. Modern lock-in 
amplifiers are controlled by a microprocessor and permit automated measurements with auto-
range selection. 
 

4. Frequency Response Analyzers 
 Frequency response analyzers (FRA) are instruments which determine the frequency 
response of a measured system. Their functioning is different from that of lock-in amplifiers. 
They are based on the correlation of the studied signal with the reference.44 The measured signal, 
eqn. (29), is multiplied by the sine and cosine of the reference signal of the same frequency and 
then integrated during one or more wave-periods:  

( ) ( ) ( )Re( ) sin sin cos,
,E

T
E t t dt

E
a

aT
1 1 1

1
1

0

1
2

= + =∫ ω ϕ ω ϕ  (34)

and 

( ) ( ) ( ) ( )Im sin cos sin,
,E

T
E t t dt

E
a

T a
1 1 1

0

1
1

1
2

= +∫ =ω ϕ ω ϕ  (35)

Such integration recovers the real and imaginary parts of the measured signal. It can also be 
shown that all the harmonics are strictly rejected, that is correlation of sin(kωt + ϕ) with sin(ωt) 
or with cos(ωt) is equal to zero for k>1. The advantage of the correlation process is also 
reduction of noise (of arbitrary frequency), its influence decreasing with the increase of the 
integration time. Figure 7 shows the attenuation of the output signal as a function of frequency 
and the number of integration cycles N. Modern FRAs carry out all the computations digitally. 
FRAs have a wide frequency range (12 decades) and high precision. 
 Recently, Diard et al.45 studied effects of electrochemical non-linearities on impedance 
measurements using a FRA. They derived theoretical expressions for the error in impedance 
measurements using the odd harmonic test criterion46. Measurements of the fundamental and 
third harmonic in the electrode response are sufficient to estimate the impedance error. 
 

Figure 6.  

Figure 7.  

 A comparison of PSD and FRA was recently presented by Evans,47 as shown in Table 1.
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Table 1 

Comparison of PSD and FRA 

Lock-in amplifier FRA 
Advantages Advantages 
• Very sensitive • Faster analysis 
• Effectively removes noise • Wide frequency range 
• Reduces harmonic distortion • Removes harmonic distortion 
• Suppresses dc noise • Direct output to external device 
• Relatively low cost • Easy standalone measurements 
Disadvantages Disadvantages 
• Limited frequency range • Higher cost 
• Slower • Limited noise removal 
• Standalone readings difficult • Limited sensitivity 
 
 

5. Fast Fourier Transform (FFT) 
 It has been shown in Section I.1(i) that the system impedance is defined as the ratio of 
Laplace transforms, eqn. (6), of potential and current. In general, the transformation parameter is 
complex, s = ν +jω. The imaginary Laplace transform: 

( )F j f t dtj tω ω= ∫ −
∞

( )e
0

 
(36)

is called the single sided Fourier transform. Taking the Fourier transform of the perturbation 
signal and that of the resulting signal allows determination of the transfer function, e.g. the 
system ac impedance may be obtained from:  

( ) ( )
Z j

F E t
F i t

E j
i j

ω
ω
ω

= =
[ ]
[ ( )]

( )
( )

 
(37)

where symbol F denotes the Fourier transform. The fast Fourier transform (FFT) provides a fast 
and efficient algorithm of computation of the Fourier transform.48 The number of points acquired 
must be equal to 2k, where k is an integer.  
 Certain proprieties of the FFT technique influence the obtained results.28,48,49,50  First of 
all the Fourier transform defined by eqn. (36) involves integration to infinity. In practice only 
limited length data are transformed, causing broadening of the computed frequency spectrum. 
This problem is known as leakage. It may be minimized by increase of the data record acquired 
in the time domain. However, it will disappear when the acquisition time is equal exactly to an 
integer multiple of the wave repetition period. That is if the data acquisition is terminated at other 
times than the multiple of the wave period, sharp discontinuities of the signal are introduced 
(because there is no continuity between the last and the first point of the signal) which causes 
frequency peak broadening, that is a distribution of frequencies is obtained instead of discrete 
values. Therefore, synchronization of the sampling time with the wave period is necessary. 
 Another problem called aliasing is connected with the presence of the frequencies larger 
than one-half of the time domain sampling frequency. This problem may be easily eliminated by 
assuring that the sampling frequency is greater than (or at least equal to) twice the highest 
frequency present in the measured signal. In some cases the highest frequencies may be filtered 
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out by a low-pass filter. This minimum sampling frequency, necessary to get information about 
the existing signal, is called the Nyquist sampling rate. 
 In general, the perturbing signal may have an arbitrary form. However, in practice, the 
most often used perturbation signals are50,51,52: 1) pulse, 2) noise, and 3) sum of sine waves. 
 
(i) Pulse Perturbation 
 Fourier transform of an infinite short pulse function: h t K t( ) ( )= δ , where δ(t) is Dirac’s 
delta function, equals: H j K( )ω = , that is it contains all the frequencies with the same amplitude 
K. Such a function cannot be realized in practice and must be substituted by a pulse of a short 
duration ∆t. However, such a function does not have uniform response in the Fourier (i.e. 
frequency) space. Fourier transform of such a function, defined as: h(t) = 1 for t = 0 to T0 and h(t) 
= 0 elsewhere, equals: 

H j h t dt dt
j

j t j t
T j T

( ) ( )e e
e

ω
ω

ω ω
ω

= ∫ = ∫ =
−−

∞
−

−

0 0

0 01
 

(38)

Figure 8 presents the graph of the amplitude of |H(jω)| as a function of frequency. It is obvious 
that the amplitude of the higher frequency signals is attenuated. Therefore, only a limited 
frequency range may be studied because the higher frequency response is too small. It was 
shown50,51 that even low level noise disturbs significantly the obtained impedance spectra.  
 

Figure 8.  

 
(ii) Noise Perturbation 
 White noise, that is noise consisting of continuous spectrum of frequencies (or a computer 
generated pseudo-random white noise) may be used as a perturbation signal in practical 
impedance measurements.50,51 However, single frequency components obtained by the FFT have 
relatively low amplitudes and long data acquisition time is necessary to obtain reliable results.50,51 
Even low noise contamination of the measured signal leads to significantly disturbed impedance 
spectra. 

 

(iii) Sum of Sine Waves 
 In this technique the perturbation signal is composed of a sum of selected sinusoids. This 
technique was introduced and extensively used by D.E. Smith and coworkers.50,49,53,54  The 
applied signal consists of a fundamental harmonic frequency f0 and a number of odd harmonics 
(2n+1)f0. This arrangement is superior to other perturbation wave forms.50 All these frequencies 
are applied at the same time and the response to each frequency is found by the FFT. This 
technique has been applied by Smith and coworkers to study electrode kinetics in the frequency 
range 10 to 500 Hz. It should be mentioned the such technique is used in low frequency 
impedance analysis (below 10 Hz) in PAR 273 series potentiostats (software implemented).  
 Popkirov and Schindler51 have demonstrated that by the appropriate selection of phases 
and amplitudes of the individual sinusoidal components the measured results may be improved. 
First of all, signal phases may be optimized to minimize the observed peak to peak signal 
amplitude. This also allows the amplitudes of the individual components to be increased by over 
30%, maintaining the total amplitude at its initial level, thus increasing the power of the single 



15 

frequency components. A decrease of the standard deviation of the impedance by 25% was 
obtained in that way. The results of such optimization are shown in Figure 9. An additional 
possibility is an optimization of the amplitudes. It is known that the response of electrochemical 
cells is different for different frequencies so that the response is weaker in the low frequency 
range and larger at high frequencies. Besides, higher noise is observed at low frequencies (for the 
same perturbation amplitude). When the amplitudes of different frequencies are optimized, that is 
they are selected in such a way that the response remains nearly constant, the response signal is 
much less sensitive to noise. An example of such optimization is displayed in Figure 10. 
 The main advantage of the FFT technique is that the information is obtained quickly, 
therefore it may be applied to study impedances evolving with time (of course, impedance must 
be considered constant during the time of measurements). The weakness of the FFT technique is 
that the response to individual frequencies is usually weaker than that when only one frequency is 
applied. 
 It should be added that other types of analysis of the system responses were also used, e.g. 
Laplace transform of the applied perturbation and the obtained response to determine the 
impedance spectra.28,55-61 

 

Figure 9.  

 

Figure 10.  

 
III. IMPEDANCE OF FARADAIC REACTIONS IN THE PRESENCE OF 

DIFFUSION 
 Total electrode impedance consists of the contributions of the electrolyte, the electrode-
solution interface and electrochemical reactions taking place on the electrode. First, we shall 
consider the case of an ideally polarizable electrode, followed by semi-infinite diffusion in linear, 
spherical and cylindrical geometry and, finally a finite-length diffusion. 
 

1. The Ideally Polarizable Electrode 
 An ideally polarizable electrode behaves as an ideal capacitor because there is no charge 
transfer across the solution-electrode boundary. In this case the equivalent electrical model 
consists of the solution resistance, Rs, in series with the double-layer capacitance, Cdl. Analysis of 
such a circuit was presented in Section I.2(i). 
 

2. Semi-Infinite Linear Diffusion 
 In general, it is possible to write the expression for the impedance for any mechanisms. 
The procedure shown below is general and may be applied to other processes involving diffusion. 
For the reaction: 

Ox + ne ¾ Red (39)
the current is described by: 
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i nF k C k Cf O b R= −[ ( ) ( )]0 0  (40)

where kf and kb are the potential-dependent rate constants for the forward and backward reactions: 
kf = ko exp[-αnf(E-E0)] and kb = ko exp[(1-α)nf(E-E0)], ko and E0 are the standard rate constant 
and standard potential, respectively, CO(0) and CR(0) are the surface concentrations of the forms 
Ox and Red, α is the transfer coefficient, n number of electrons, and f = F/RT. When a small av 
perturbation signal, ∆E = E0 exp(jωt), is applied, the current and concentrations oscillate around 
steady-state values: i i idc= +∆ ,  C C CO O dc O= +, ∆ , and  C C CR R dc R= +, ∆ , where the subscript 
dc indicates a parameter which changes only slowly with time i.e., either a steady-state term or 
the one that does not change with ω or its harmonics, and the symbol ∆ indicates a parameter 
oscillating periodically with time. In general, the oscillating potential and the concentrations may 
be written as: 

∆E E j t= ~exp( )ω ,  ∆i i j t=
~

exp( )ω   ∆C C j tO O=
~ exp( )ω   and  ∆C C j tR R= ~ exp( )ω  (41)

where ~E , ~i , ~CO,  and ~CR  are the phasors of the voltage, current and concentrations. Because we 
are interested in the ac components of these parameters, we can solve equations for ∆E, ∆i, ∆CO  
and ∆CR only. In general, the current is a function of the potential and concentrations, eqn. (40), 
and it may be represented as an infinite Taylor series: 
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 (42)

It can be noticed that because eqn. (40) is linear with respect to the concentrations, only 
first-order derivatives versus concentrations are different from zero. For small perturbations it is a 
good approximation to keep only the linear terms. This linearization is a fundamental property of 
EIS, therefore the amplitudes applied must be small, ∆E < 8/n mV6 peak-to peak, where n is the 
number of electrons exchanged in the reaction. Higher harmonics analysis has also been 
described.6,7,27,62  The derivatives in eqn. (42) correspond to stationary conditions and may be 
obtained from eqn. (40): 

[ ]∂
∂

α α
i
E

n Ff k C k Cf O b R= − + −2 0 1 0( ) ( ) ( )  
(43)

∂
∂

i
C

nFk
O

f=  and  
∂ i
C

nFk
R

b∂
= −  

(44)

In order to find concentrations, Fick’s diffusion equation must be solved for ∆C. For semi-infinite 
linear diffusion the following equations must be solved: 
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∂∆
∂

∂
∂

C
t

D C
x

O
O

O=
2

2

∆   and  ∂∆
∂

∂
∂

C
t

D C
x

R
R

R=
2

2

∆  
(45)

Taking into account eqn. (41) and 

∂∆ ∂ ω ωC t j C j tO O/ ~ exp( )=  
(46)

eqn. (45) may be rearranged to: 

j C D
d C

dx
O O

Oω
~

~

=
2

2   and  j C D
d C

dx
R R

Rω
~

~

=
2

2  (47)

with the boundary conditions: 

x = 0:                 
dC
dx

i
nFD

O

O

~ ~
= ,    

dC
dx

i
nFD

R

R

~ ~
= −  

(48)

                           D
dC
dx

D
dC
dxO

O
R

R
~ ~

+ =0 
(49)

x → ∞:               ~CO  → 0  and ~CR  → 0 (50)

where, at x →  ¼, only a dc concentration gradient exists. After further rearrangements one 

obtains: 

d C
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(51)

which have the following solutions: 

~ ( ) exp( ) exp( )C x A s x B s xO O O= − +  and ~ ( ) ' exp( ) ' exp( )C x A s x B s xR R R= − +  
(52)

For semi-infinite diffusion B and B’ are both equal to zero, to fulfill the condition (50). In order 
to determine the constants A and A’, the condition at x = 0 must be considered: 

dC
dx

s A i
nFD

O
O

O

~ ~
= − =  

(53)

and substituting sO  and sR , eqn. (50), one gets: 

A C i
nF j DO

O
= = −

~ ( )
~

0
ω

 and A C i
nF j DR

R
' ~ ( )

~
= =0

ω
 

(54)

Now, it is possible to make the substitutions into eqn. (42), conserving only linear terms: 
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(55)

and the faradaic impedance equals ~ / ~Z E if = − (the negative sign arises from the assumed 
convention in which the cathodic current is positive): 
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(56)

The total faradaic impedance, Z f , consists of three terms: the first one comes from the 
derivative: ∂ ∂i E/  and is called charge-transfer resistance, Rct, and the two others, which are 
contributions from ∂ ∂i Ci/ , are called impedances of mass transfer or semi-infinite Warburg 
impedance63-66, ZW :  

Z R Z R Z Zf ct W ct W O W R
^ ^ ^

,
^

,= + = + +  
(57)
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(60)

Assuming that the process is dc reversible, the surface concentrations are described by the Nernst 
equation: CO  (0)/CR  (0) = exp[nf(E-E0)] and eqns. (59) and (60) may be written as: 
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2
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 (61)

where σ is the mass transfer coefficient equal to the sum of the contributions of the forms Ox and 
Red: 
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(62)

Because ( ) ( )1 1 2 1/ /j j= − , the mass transfer impedance may be written as: 

Z jW
^ / /= −− −σω σω1 2 1 2  

(63)

This equation may be also obtained directly by assuming that the charge-transfer reaction is 
reversible and calculating the mass transfer impedance from: 
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(64)

where, from the Nernst equation, one gets: 
dE dC RT nFCO O/ / ( )= 0  and dE dC RT nFCR R/ / ( )= − 0  (65)

After substitution of eqn. (64) into (65), eqn. (63) is obtained as before. The mass transfer 
impedance is called, in the case of semi-infinite linear diffusion, a semi-infinite Warburg 
impedance. Assuming that there is only the oxidized form initially in the solution (CO*), the 
surface concentrations may be estimated from11: 

C CO O( ) *0
1
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+
ξθ

ξθ
 and C CR O( ) *0

1
=

+
ξ
ξθ

 
(66)

where ξ = (DO / DR )1/2 and θ = exp[nf(E-E0)] and ξθ = exp[nf(E-E1/2)]. Substituting eqn. (66) into 

(58) the charge-transfer resistance may be expressed as: 
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and it has a minimum at: 
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(68)

For the processes for which the transfer coefficient, α, is equal to 0.5, the minimum of Rct is 
observed at the half-wave potential. Similarly, the mass transfer impedance equals: 
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The Warburg impedance has a minimum at E1/2. The mass transfer impedance is a vector 
containing real and imaginary components which are identical, that is the phase-angle: 
ϕ = = − = −atan( / ) atan( )'' 'Z ZW W 1 450 . The faradaic impedance is shown in Figure 11b (dashed 
line). On the complex plane plot it is a straight line with a slope of 1 and intercept Rct. The total 
electrode impedance consists of the solution resistance, Rs, in series with the parallel connection 
of the double-layer capacitance, Cdl, and faradaic impedance, Figure 11a. This is so called 
Randles model.64,65,67 Figure 11b-d also shows complex plane and Bode plots for the total 
electrode impedance in the presence of slow charge-transfer kinetics. It should be stressed that 
the Warburg impedance cannot be represented by a connection of simple R and C elements 
because of the non-integer power of frequency (ω--1/2) and it constitutes a distributed element 
which can only be approximated by an infinite series of simple electrical elements. 
 

Figure 11.  
 
Figure 12. 
 In the case when the surface and bulk concentrations are the same, that is when the mass 
transfer impedance may be neglected, the equivalent circuit corresponds to that in Figure 4. In 
this case a semicircle is observed on the complex plane plots. In the other limiting case, when the 
charge-transfer resistance is neglected (reversible case) a straight line, with a slope of 1, is 
obtained on the complex plane plots.  
 The dependence of the mass transfer and charge-transfer impedances on the electrode 
potential is displayed in Figure 12. The charge-transfer and mass transfer impedances have a 
minimum at Es, eqn. (68), and E1/2, respectively, according to eqns. (67) and (69). 
 A procedure for assessing nonlinearities in the Randles circuit, based on nonlinear 
regression analysis was described recently.68 
 VanderNoot69 studied poorly separated faradaic and diffusional processes. He has found 
that the complex non-linear least-squares regression is capable of extracting kinetic information 
from impedance measurements when the ratio of the charge-transfer process time constant tf = 
RctCdl to the diffusion process time constant td = Rct

2/(2σ2), tf/td = 2σ2Cdl/Rct, is lower than or 
equal to 30. 
 A mechanism including two successive electron transfer reactions was analyzed by 
Armstrong and Firman.70 A general approach to multistep mechanisms involving soluble species 
in semi-infinite diffusion was presented recently by Harrington.71  It allows for determination of 
the number of break-point frequencies on the Bode magnitude plot for an arbitrary mechanism 
and, in consequence, for the determination of the reaction mechanism and kinetics. 
 

3. Spherical Diffusion 
 This case arises, e.g., when working with dropping or hanging mercury electrodes. Let us 
consider semi-infinite diffusion to a sphere of radius r0 with both oxidized and reduced forms 
soluble in the solution. In this case eqn. (47) should be substituted by13,14: 
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These equations may be rearranged into a simpler form, eqn. (51), by substitution ~ ~u rCO=  and 
~ ~v rCR= : 

d u
dx

s uO

2

2
2

~ ~=  and d v
dx

s vR

2

2
2

~ ~=  
(71)

The solution is: 
~ exp( / )u A j D rO= − ω  and ~ exp( / )v A j D rR= − ω  (72)

Taking into account that du dr C rdC drO R
~ / ~ ~ /= +  and that at r = r0 (at the electrode surface) 

dC dr i nFDO O
~ / ~ /=  the following solutions are obtained: 
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(73)

The mass transfer impedance may be obtained from eqn. (64). Assuming a reversible dc process 
one obtains, similar to the case of linear diffusion:  

Z
RT

n F D C
r

r
j
D

W
i ii O R

i

^

, ( )
= ∑

+
⎛

⎝
⎜

⎞

⎠
⎟=

2 2
0

0
0

1
ω

 
(74)

or 
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where  

y
r

D
i

i=
1 2

0 ω
 

(76)

Influence of the nonlinearity of diffusion on the observed complex plane plots is shown in Figure 
13. Spherical mass transfer causes formation of a depressed semicircle at low frequencies instead 
of linear behavior observed for linear semi-infinite diffusion. For very small electrodes 
(ultramicroelectrodes) or low frequencies the mass transfer impedances become negligible and 
the dc current becomes stationary. On the Bode phase-angle graph a maximum is observed at low 
frequencies. 
 

Figure 13.  
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4. Cylindrical Electrodes 
 An example of cylindrical diffusion is a diffusion towards a conducting wire. Solutions 
for cylindrical electrodes have been given by Fleischmann et al.72,73 and Jacobsen and West74. 
Methods presented by both groups give the same results; however, the latter is simpler. In this 
case the diffusion equation is similar to that for spherical diffusion, eqn. (70). The solution is 
shown here for the oxidized form only: 
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(77)

Rearrangement for the oscillating concentration, using eqn. (46), leads to: 
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Substitution of z = r (jω/DO)1/2 gives: 

d C
dz z

d C
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CO O
O

2

2
1

0

~ ~
~

+ − =  
(79)

This is a modified Bessel equation of zero order with a general solution74: 

C AI z BK zO
~

[ ] [ ]= +0 0  
(80)

where A and B are constants and I0 and K0 are zero-order modified Bessel functions. Taking into 
account semi-infinite diffusion conditions, that is ~CO → 0  when r → 4, leads to A = 0. At the 
electrode surface, r = r0: 

d C
dr

j
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(81)

where z0 = r0(jω/DO)1/2 and: 

B
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(82)

Then, using eqns. (64) one may get: 

Z
dE

dC
C

i

RT
n F D C

r K z
z K zW

O

O

O O

^ [ ]
[ ]

~

~ *= = 2 2
0 0 0

0 1 0
 

(83)

The function in eqn. (83) may be evaluated using Mathematica, Maple or specific subroutines for 
complex modified Bessel functions. The corresponding complex plane plots are shown in Figure 
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14. At low frequencies cylindrical diffusion produces a constant imaginary impedance 
component. 
 

Figure 14.  

 
5. Disk Electrodes 

 The solution for disk electrodes was presented by Fleischmann et al.72,73. In this case the 
differential equation corresponds to the normal and radial diffusion (two-dimensional) to the 
electrode. They obtained the following equations describing the faradaic impedance in the case of 
a slow charge transfer when only Ox is initially present in the solution, its concentration being 
CO

* : 
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(85)

where a is the disk radius, J1 is the Bessel function of the first kind and first order, l 2 =D/ω, and 
tanΘ = 1/β2. The first term in Z f

'  corresponds to the charge-transfer resistance. The integrals in 
eqns. (84)-(85) were tabulated in ref. 73 as functions Φ4 and Φ5 of (a2ω/D) and in a different 
form in ref. 72. At sufficiently high frequencies the results are similar to those for linear diffusion 
whereas, at low frequencies, the impedance becomes real as for spherical electrodes. The 
complex plane plots for the diffusion to a disk are shown in Figure 15 exhibit a flattened 
semicircle. 
 Fleischmann and Pons72,73,75 also considered diffusion to microring electrodes. 

 

Figure 15.  

 
6. Finite-Length Diffusion 

 In many cases the diffusion is not semi-infinite. This case is, for example, observed for 
polymer electrodes, for a thin mercury layer deposited on surfaces, for rotating disk electrodes, 
etc. In such cases, in eqn. (52) parameters B and B’ are not equal to zero. Two cases may be 
distinguished for finite-length diffusion depending on the condition at the boundary located at a 
distance l form the electrode:  
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1) transfer of electroactive species is possible at x = l, and C(l) =0, but dC(l)/dx ≠ 0. This is the 
so-called conducting or transmissive boundary. It is observed, for example for the rotating 
disk electrode, where the diffusion layer thickness is determined by the rotation rate. And 

2) no charge transfer is possible at x = l, that is dC(l)/dx = 0. This is the so called reflecting 
boundary, observed in the case of conducting polymers. 

 

(i) Transmissive Boundary 
 In order to determine the constants A, B, A’, and B’ in eqn. (52), boundary conditions 
must be used. At the electrode surface the concentration gradients are: 
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x = l: ~ exp( ) exp( )C A s l B s lO O O= − + = 0  and ~ 'exp( ) 'exp( )C A s l B s lR R R= − + = 0  (87)

which leads to: 

A i
nF j D

s l
s l s lO

O

O O
= −

+ −

~ exp( )
exp( ) exp( )ω

 and B i
nF j D

s l
s l s lO

O

O O
=

−
+ −

~ exp( )
exp( ) exp( )ω

 
(88)

 

A i
nF j D

s l
s l s lR

R

R R
'

~ exp( )
exp( ) exp( )

=
+ −ω

 and B i
nF j D

s l
s l s lR

R

R R
'

~ exp( )
exp( ) exp( )

= −
+ −ω

 
(89)

The surface concentrations are: 
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and substitution to eqn. (64) gives the mass transfer impedances: 
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or, assuming that the diffusion coefficients of O and R are the same, this becomes: 
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The Warburg impedance is displayed in Figure 16 a and the total impedance in Figure 16b-d. At 

low frequencies the function tanh(x) ≅ x, and ZW  becomes real and frequency independent: 
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(93)

Therefore the low frequency limit of the electrode impedance equals: 
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(ii) Reflective Boundary 
 In this case the boundary conditions at x = 0 are the same as for eqn. (86) but at x = l they 
are different, the concentration gradient being equal to zero: 
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They give: 
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and 
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or assuming equal diffusion coefficients: 
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Figure 16. 
 
The corresponding Warburg and total electrode impedances are shown in Figure 16. At low 

frequencies coth(x) ≅ 1/x + x/3 and ZW  becomes: 

Z l
D

j D
lW = −

2
3

2σ σ
ω  

(100) 

The imaginary part of the impedance goes to infinity and the real part to a constant value which 
indicates that no charge transfer occurs at low frequencies and the electrode behavior is purely 
capacitive. For these conditions the Warburg impedance corresponds to a series connection of the 
resistance RW = Z’W  and the capacitance CW = l D/ 2 σ . The limiting value of the real part of 
the total cell impedance equals: 
 

Z R R l Dt s ct' /= + + 2 3σ  
(101) 

The problem of finite length diffusion in spherical and cylindrical symmetry was solved by 
Jacobsen and West74. 
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7. Analysis of Impedance Data in the Case of Semi-Infinite Diffusion: Determination of 

the Kinetic Parameters 
 In the case of the charge transfer to diffusing species, ac voltammetry or ac polarography 
is usually used and the impedance curves are determined from a series of ac voltammetric curves 
registered at different frequencies. The methods of analysis of such curves are described below. 
 

(i) Randles’ Analysis64,65,67 
 The experimentally measured ac current or total admittances are functions of the electrode 
potential. Figure 17 presents the dependence of the total admittances of a process limited by the 
diffusion of electroactive species to and from the electrode and the kinetics of the charge transfer 
process, on the electrode potential. Information on the kinetics of electrode process is included in 
the faradaic impedance. It may be simply determined from the total electrode impedance:64,65 

1 1
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^
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(102)

It should be kept in mind that for the calculation of the impedances from admittances the 
following equation must be used: 
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+2 2  and 
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' ' '

= −
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(103)

The parameters Rs  and Cdl  must be determined in a separate experiment in a solution containing 
supporting electrolyte only, keeping the same distance between the working electrode and the tip 
of the Luggin capillary (i.e. to maintain Rs constant). This may be possible when this distance is 
large or the solution in the cell is exchanged without changing the electrode configuration. The 
other possibility is to extrapolate the admittance (or impedance) from the range where the 
faradaic impedance is negligible, that is from potentials more positive and more negative than the 
peak potential. Then, the real and imaginary components of the faradaic impedance are plotted 
against ω-1/2. They form two parallel lines with slopes of σ and intercepts of Z f

'  = Rct and zero, 
Figure 18. The dependence of Rct on potential allows the determination of the standard rate 
constant and the transfer coefficient. 
 

Figure 17.  

 

In order to eliminate influence of the depolarizer concentration one can also evaluate the ratio of 
the slope to intercept of the Randles' plot. Proper rearrangement leads to: 
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from which the rate constant as a function of the electrode potential may be evaluated. At the 
reversible half-wave potential this ratio gives directly the standard rate constant: 
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(105)

 

Figure 18.  

 
(ii) De Levie-Husovsky Analysis 
 De Levie and Husovsky76 have proposed method based on analysis of faradaic 
admittances. The Faradaic admittance may be easily determined from the total impedance: 
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The ratio of the imaginary to real faradaic admittances equals: 
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where 
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From the dependence of log [ζ/{1+exp[nf(E - E1/2)]}] versus E the forward rate constant is 
easily determined. 
 

(iii) Analysis of cot ϕ 
 Another type of determination of kinetic parameters is based on the determination of the 
phase-angle of the faradaic impedance. From eqns. (57), (67) and (69) one may get: 
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or after substitution: 
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It is clear that cot ϕ depends linearly on ω1/2 and on electrode potential. It has a maximum at the 
potential Es described by eqn. (58). The difference between the potential of the maximum of 
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cot ϕ and E1/2 allows for estimation of the transfer coefficient α. The potential dependence of cot 
ϕ is shown in Figure 19. The maximal value of cot ϕ is described by: 
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while at the half-wave potential it is given by: 
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Analysis of cot ϕ as a function of ω1/2, illustrated in Figure 20, gives access to the standard rate 
constant k0. 
 

Figure 19.  

 

Figure 20.  

 

(iv) Sluyter's Analysis 
 Complex plane plots obtained in the case of a slow charge transfer with semi-infinite 
diffusion were presented in Figure 11a. They represent a semicircle (at high frequencies) 
followed by a straight line. General equations describing total real and imaginary impedance 
were analyzed by Sluyters and coworkers26,27,78,79 . The total electrode impedance is given as: 
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where the faradaic impedance is described by eqn. (57). This equation leads to rather complicated 
expressions for the real and imaginary parts of the total impedance: 
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and 
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(115) 

The graphical illustration of these equations is presented in Figure 11b. Although in simple cases 
the process parameters may be obtained graphically, the best way to analyze the impedances is, 
however, by the complex nonlinear least-squares approximation technique. From such fits the 
following parameters may be obtained: Rs, Cdl, Rct and the Warburg coefficient σ. 
 

IV. IMPEDANCE OF A FARADAIC REACTION INVOLVING 
ADSORPTION OF REACTING SPECIES 

 In Section III, reactions of charge transfer to diffusing species in solution were 
considered. In this Section reactions involving adsorbed species in the absence of diffusion 
limitations will be presented. The latter condition means that the concentration gradient at the 
electrode surface is negligible, that is the concentrations in solution are large enough and/or 
currents low. Reactions involving one and two and more adsorbed species will be considered 
subsequently. 
 

1. Faradaic Reaction Involving One Adsorbed Species 
 Let us consider the following reactions: 
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k
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B e Cads
k

k
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−2

2
 

(117)

where index sol denotes species in solution and ads adsorbed species. The rates of these reactions 
may be written, assuming Langmuir adsorption isotherm for B, as: 
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and 
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(119)

where ki
0  are the standard rate constants of these two reactions, βi are the symmetry coefficients, 

ΓA and Γs are the surface concentrations of the species A and of free adsorption sites, respectively, 
aA and aC are the surface concentrations of A and C (assumed as equal to the bulk concentrations) 
and Ei

0 are the standard red-ox potentials of these reactions. At the equilibrium potential, Eeq the 
net rates of both reactions are null and the following relations are obtained: 
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(121)



30 

where index 0 indicates equilibrium conditions and a relation between surface coverage, Θ, and 
surface concentration was introduced: Γ Θ Γi i= ∞  and Γ∞  is the maximal surface concentration. 
Introduction of eqns. (120) and (121) into (118) and (119), and taking into account that: 
E E E E E E E Ei eq eq i eq i− = − + − = + −0 0 0η , where η is the overpotential, gives: 
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and 
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where the following new rate constants were introduced: 
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k k f→
=1 1e- 1β η ,    k f←

−1 e(1- 1β η) ,    k k f→
=2 2e- 2β η ,    k k f→

− −=2 2e(1- 2β η)  
(126)

The total observed current is: 
i F v v Fr= + =( )1 2 0  (127)

At the equilibrium potential rates of reactions (2) and (3) are equal to zero, which implies an 
additional condition: 
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(128)

that is there are only three independent rate constants in the system. Under steady-state conditions 
the rate of formation of adsorbed species B is the same as the rate of their consumption, therefore: 
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(129)

where σ1 = F Γ∞ is the charge necessary for the total surface coverage by B. In order to calculate 
the reaction impedance equation describing current i(η,Θ), eqn. (127), and r1 (η,Θ), eqn. (129), 
should be linearized, giving: 
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A model containing higher-order term contributions in eqns. (130)-(131) to fundamental 
harmonic impedances was recently discussed by Darowicki80,81 and Diard et al.82  Taking into 
account that (see Section III.2):  
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one obtains: 
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Elimination of ~
Θ  from eqns. (133)-(134) gives the faradaic admittance as: 
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The first term in eqn. (135) is the inverse of the charge-transfer resistance: A = 1/Rct. Knowing 
the faradaic impedance, the total electrode impedance, Z f , may be determined using eqn. (102). 
The derivatives in eqn. (135) may be easily evaluated from eqns. (122), (123), (127) and (129): 
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and 
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It is evident that parameters A and C are always positive and B may be positive or negative, 
depending on the values of rate constants. 
 

2. Impedance Plots in the Case of One Adsorbed Species 
 The faradaic admittance of the reactions (116) and (117) is described by eqn. (135). 
Analysis of the complex plane plots in such a case was presented by Cao83. Bai and Conway84 
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presented three-dimensional plots for such a reaction. Two general cases should be considered 
depending on the sign of the parameter B: 
I) B < 0 
In this case the faradaic admittance may be written as: 
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It changes from Rct
−1at very high frequencies to R B Cct

− −1 /  at very low frequencies. The 
faradaic impedance is described as: 
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where: 
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(141)

The limit of faradaic impedance at infinite frequency is also called the transfer impedance, Rt, 
while the limit at zero frequency is called the polarization resistance, Rp: 

( )limω→ =0 Z Rf p    and   ( )limω→∞ =Z Rf t  (142)

In our case Rp = Rct +R2
ct |B|/ (C - Rct |B|) and Rt = Rct. Equation (24) represents a series 

connection of the charge-transfer resistance with parallel connection of the resistance Ra and 
pseudocapacitance Ca. The complete equivalent circuit in this case is represented in Figure 21. 
The observed complex plane plots depend on the sign of the denominator of Ra. 
 

Figure 21.  

 
a) C - Rct  |B| > 0 
 In this case all the elements are positive and the faradaic impedance represents one 
semicircle on the complex plane plots, see Figure 22. When Ca >> Cdl  the total impedance 
represents two semicircles, Figure 22. When A >> |B|/C the faradaic impedance is equal to Rct . 
The complex plane plots are analogous to those shown in Figure 4 and represent one capacitive 
semicircle. 
 

Figure 22.  

 
b) C - Rct  |B| = 0 
 In this case the faradaic impedance is: 

Z R j
C

f ct
a

^
= −

1
ω

 
(143)

which corresponds to a series connection of Rct  and Cdl . The corresponding complex plane plots 
are presented in Figure 23. 
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Figure 23.  

 
c) C - Rct  |B| < 0 
 In this case the parameter Ra  is negative and the corresponding complex plane plots are 
displayed in Figure 24. 
 

Figure 24.  

 
II) B = 0 
 When B = 0 the faradaic impedance is real and equals Rct . One semicircle is observed in 
the complex plane plots, Figure 4. 
III) B > 0 
 In this case the faradaic admittance is given by: 
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with 
R C Bo = /    and   L B= 1 /  (145)

and the faradaic impedance by: 
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which corresponds to the parallel connection of the charge-transfer resistance with series 
connection of the resistance Ro  and inductance L, Figure 21b. In this case Rp = RctRo/(Rct + Ro). 
The equivalent circuit and the corresponding complex plane plots of faradaic and total 
impedances are shown in Figure 25. Diard et al.85 determined conditions under which such a low 
frequency pseudo-inductive loop may be found. 
 

Figure 25.  

 
 The above analysis shows that in the simple case of one adsorbed intermediate (according 
to Langmuirian adsorption) various complex plane plots may be obtained, depending on the 
relative values of the system parameters. These plots are described by various equivalent circuits, 
which are only the electrical representations of the interfacial phenomena. In fact, there are no 
real capacitances, inductances or resistances in the circuit (faradaic process). These parameters 
originate from the behavior of the kinetic equations and they are functions of the rate constants, 
transfer coefficients, potential, diffusion coefficients, concentrations, etc. Besides, all these 
parameters are highly nonlinear, that is they depend on the electrode potential. It seems that the 
electrical representation of the faradaic impedance, however useful it may sound, is not necessary 
in the description of the system. The system may be described in a simpler way directly by the 
equations describing impedances or admittances (see also chap. 8). In a system following 
Frumkin adsorption isotherm discontinuous impedances may be obtained.86 
 It should be added that for the system involving one adsorbed species described above 
there are two sets of kinetic parameters giving the same experimental curves87. In fact 
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permutation of the kinetic parameters: k1 ↔ k2, k-1 ↔ k-2, and β1 ↔ β2 leaves the same values of 
the dc current, the charge-transfer resistance and the parameters B and C. The problem of 
identifiability and distinguishability of electrode processes was further studied by Bertier et 
al.88-91  
 The impedance of a more complex process involving coupling between adsorption and 
diffusion was studied by Armstrong and coworkers.92,93 
 

3. Faradaic Impedance in the Case Involving Two Adsorbed Species 
 Typical examples of processes involving two or more adsorbed species are reactions of 
corrosion or anodic dissolution of metals, oxygen evolution, etc. In the case of two adsorbed 
species B and C, the electrochemical reactions may be written as:84,94,95 
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and 

C Dads
k

k
sol⇔

−3

3
 (149)

The rates of eqns. (147)-(149) may be expressed with respect to the equilibrium potential, 
similarly to eqns. (122) and (123): 
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and 
v k k3 3 2 3 1 21= − − −−Θ Θ Θ( )  (152)

where Θ1 and Θ2 are the surface coverages by B and C, respectively, and rate constants k3 and k-3 
are potential independent. From the condition at the equilibrium potential: v1 = v2 = v3 = 0 the 
following condition for the rate constants is obtained (cf. eqn. 128): 
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The charge is exchanged in reactions (1) and (2) only, therefore the total current is given as: 
i F v v Fr= + =( )1 2 0  (154)

Mass balance for Θ1 and Θ2 gives, similarly to eqn. (129): 
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v v r

Θ
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(156)

Taking into account that r0, r1 and r2 are the functions of η, Θ1 and Θ2, linearization of eqns. 
(154)-(156) and introduction of phasors gives: 
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Eqns. (157)-(159) present a system of three equations with three unknowns: Θ1, Θ2 and i
~ ~

/ η . The 
faradaic admittance is determined as: 
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where: 
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and 

E
F r r r r

=
⎛
⎝
⎜

⎞
⎠
⎟
⎛
⎝
⎜

⎞
⎠
⎟ −

⎛
⎝
⎜

⎞
⎠
⎟
⎛
⎝
⎜

⎞
⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥

2

1 2

1

1

2

2

1

2

2

1σ σ
∂
∂Θ

∂
∂Θ

∂
∂Θ

∂
∂Θ

 (165)

where the negative sign before the parameters A, B and C originates from the current definition 
(positive current for reduction). If the reactions (147)-(149) are written as oxidations this sign 
should be omitted. Calculation of the derivatives show that parameters A, D and E are always 
positive and parameters D and E may be positive or negative. 
 The faradaic impedance may be obtained from eqn. (160) as: 
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The polarization resistance is: Rp = Rct + B/[A2(D + B/A)]. 
 

4. Impedance Plots in the Case of Two Adsorbed Species 
The second term in eqn. (166) represents a second-order electrochemical impedance95 and its 
denominator may be expressed in the following form: 

( )1 2 2+ −j n nω ζ ω ω ω/ /  (167)

where ωn is called the undamped natural frequency and ζ is the damping ratio of the system32 
expressed as: 
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Depending on the value of the parameter ζ the poles of the second term of eqn. (167) are real or 
imaginary. Taking into account eqn. (167) there are 54 theoretically different cases of poles and 
zeros. They were considered systematically in ref. 95. The faradaic impedance may be 
represented by many different equivalent circuits, depending on the sign of parameters B and C 
and relative values of all the parameters94. Its complex plane plots display different forms from 
two capacitive semicircles through various capacitive/inductive loops to two inductive loops.  In 
order to obtain the total impedance, the double-layer capacitance and solution resistance should 
be added to the faradaic impedance. Some examples complex plane plots of faradaic impedances 
are presented in Figure 26. 
 

Figure 26.  

 
5. Faradaic Impedance for the Process Involving Three or More Adsorbed Species 

 Similarly to the case of two adsorbed species presented above, more complicated cases 
may be considered. Such a case is often found in corrosion.96  Assuming existence of three 
adsorbed species a system of equations similar to eqns. (157)-(159) may be written: 
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where Θi are surface coverages of adsorbed species, σi their charges necessary for monolayer 
coverage, and ri are the corresponding mass balances and relations between adsorbed species, as 
in eqns. (155)-(156), which may be different for different mechanisms. Eqns. (169)-(172) are 
solved using methods for the solution of the system of linear equations (e.g. Crammer’s method). 
In the case of three adsorbed species, very complicated complex plane plots may be obtained. 
Some examples are presented in ref. 96. 
 A general model of a multistep mechanism involving adsorption and diffusion was 
recently given by Harrington.97 
 

V. IMPEDANCE OF SOLID ELECTRODES 
1. Frequency Dispersion and Electrode Roughness 

 The general model of the ideally polarizable electrode presented in Section III.1, (see also 
eqn. (17) and Figure 2), and that in the presence of a faradaic reaction, Section III.2, Figure 4a, 
are found experimentally on liquid electrodes, (e.g. mercury, amalgams, indium-gallium, etc.). 
On solid electrodes98 deviations from the ideal behavior are often observed. On ideally 
polarizable solid electrodes the electrical equivalent model cannot be usually represented (with 
except of monocrystalline electrodes in the absence of adsorption) as a series connection of the 
solution resistance and double-layer capacitance. However, on solid electrodes a frequency 
dispersion is observed, that is the observed impedances cannot be represented by connection of 
simple R-C-L elements. The impedance of such systems may be approximated by an infinite 
series of parallel R-C circuits i.e. a transmission line (see Section VI, Figure 41b, ladder circuit). 
The impedances may often be represented by an equation without simple electrical 
representation, through so-called distributed elements. The Warburg impedance is an example of 
a distributed element.  

Problems similar to those observed on ideally polarizable solid electrodes arise also in the 
presence of faradaic reactions at these electrodes. Below, various models used for explanation of 
solid electrode impedance behavior are presented. 

 
2. Constant Phase Element  

 Dispersion of the measured complex dielectric constant is known from dielectric 
relaxation experiments.18  The complex dielectric constant ε* may be represented as: 
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where ε¼ and εs are the dielectric constants determined at ω → ¼ and ω → 0, respectively, and 
G(τ) is the time constants distribution function. When there is only one relaxation time constant, 
that is G(τ) = δ(τ-τ0), eqn. (173) simplifies to: 
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Cole and Cole99 described the observed distribution of relaxation times as: 
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 (175)

where φ is a constant between 0 and 1. When φ = 1 there is only one time constant in the system 
(no dispersion) and the eqn. (173) reduces to eqn. (174). Eqn. (175) represents a semicircle 
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rotated by (1-φ)900 on the complex plane. This behavior can be explained by eqn. (173) with the 
distribution function G(τ) described as: 
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τ
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φ π

φ τ τ φ π
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−
− −

1
2

1
10
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It represents a lognormal distribution that is it is a normal distribution of a function of ln(τ/τ0). 
An example of such a distribution function is shown in Figure 27. For φ = 1 the distribution 
function becomes the Dirac's delta function. 

 

Figure 27.  

 
 The impedance of the ideally polarizable electrode may be represented as a series 
connection of the solution resistance and the double-layer capacitance, which produces a straight 
line, perpendicular to the real axis, on the complex plane plots. However, on solid electrodes a 
straight line with angle lower than π/2 is often observed, Figure 28a. In order to describe such 
behavior a model of distributed time constants, similarly to that used by Cole and Cole99, was 
proposed.100  It was supposed101 that such a distribution may arise from: (i) a microscopic 
roughness caused by scratches, pits, etc., always present on solid surfaces, which causes coupling 
of the solution resistance with the surface capacitance and (ii) a capacitance dispersion of 
interfacial origin, connected with slow adsorption of ions and chemical inhomogeneities of the 
surface. In such cases the double-layer capacitance may be expressed in terms of a so-called 
constant phase element, CPE. Its impedance is given by: 
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T j
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( )
= 1

ω φ  
(177)

where T is a constant in F cm-2 sφ-1 and φ is related to the angle of rotation of a purely capacitive 
line on the complex plane plots: α φ= −90 10( ) , Figure 28a. Eqn. (177) may also be written as: 
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and it represents a "leaking" capacitor, which has non-zero real and imaginary components. Only 
when φ =1, T ≡ Cdl and purely capacitive behavior is obtained. In general, eqn. (177) may 
represent pure capacitance for φ = 1, infinite Warburg impedance for φ = 0.5, pure resistance for 
φ = 0 and pure inductance for φ = -1. Brug et al.100 presented a method for estimation of the 
average double-layer capacitance, Cdl , from the value of T. Assuming that the electrode 
impedance may be expressed as a sum of the solution resistance and the impedance of the CPE 
element, and using the Cole-Cole formula for the distributed time constants, the total impedance 
may be expressed as: 
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where τ0 = R Cs dl . It leads to: 

T C Rdl s=
− −φ φ( )1

 
(180)

which allows for the estimation of the average double-layer capacitance in the presence of the 
CPE element.  

 In the presence of the faradaic reaction, assuming that the faradaic impedance can be 
expressed as a simple equivalent resistance, the complex plane plots represent a rotated 
semicircle, Figure 28b, instead of a semicircle centered on the Z’ axis.102-104  Similarly, the 
double-layer capacitance in the presence of the faradaic reaction may be obtained as:100 

[ ]T C R Rdl s ct= +− − −φ φ1 1 1
 

(181)

 An example of the application of eqn. (181) to the reduction of protons and tris-oxalato 
ferric ions was presented by Brug et al.100. Lasia and Rami87 studied the hydrogen evolution 
reaction on polycrystalline Ni in 1 M NaOH. They obtained rotated semicircles on the complex 
plane plots and the values of the parameter T and φ were potential dependent; however, the 
double-layer capacitances estimated from eqn. (181) were constant, equal to ~38 µF cm-2, which 
is a reasonable value taking into account some surface roughness. Similar results were also 
obtained on rhodium.105 
 

Figure 28. 
 VanderNoot106 tried to extract the distribution function G(τ) from the CPE model. He has 
found that the Fourier inversion method is not suitable but the maximum entropy deconvolution 
works relatively well. However, because this is an ill posed problem the results obtained are very 
sensitive to the experimental errors (noise). 
 Historically, the CPE phenomenon was usually attributed to surface roughness. Pajkossy 
et al.101,107 studied recently the origins of the CPE. They found that surface roughness of the order 
found on polycrystalline metals could lead to the CPE behavior only at much higher frequencies 
than those observed experimentally. They concluded that an increase in the surface roughness of 
polycrystalline Pt practically did not change (even slightly increased) the φ parameter. However, 
it was found that the capacitance dispersion increases markedly with the addition of chloride 
ions.101 

 Experiments carried out on monocrystalline Au(111) and Au(100) electrodes in the 
absence of specific adsorption did not show any frequency dispersion.107  Dispersion was 
observed, however, in the presence of specific adsorption of halide ions. It was attributed slow 
adsorption and diffusion of these ions and phase transitions (reconstructions). In their analysis 
they expressed the electrode impedance as: ( )intZ R j Cs= + −ω 1  where intC  is a complex 
electrode capacitance. In the case of a simple CPE circuit this parameter equals: 

( )intC T j= −ω φ 1. However, analysis of the ac impedance spectra in the presence of specific 
adsorption revealed that the complex plane capacitance plots (C’’

int vs. C’int) show formation of 
deformed semicircles. Consequently, they proposed an electrical equivalent model shown in 
Figure 29, in which instead of the CPE there is a double-layer capacitance in parallel with a series 
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connection of the adsorption resistance and capacitance, Rad and Cad, and the semiinfinite 
Warburg impedance connected with the diffusion of adsorbing species. Comparison of the 
measured and calculated capacitances (using the model in Figure 29) for Au(111) in 0.1 M 
HClO4 in the presence of 0.15 mM NaBr is shown in Figure 30. 

 

Figure 29.  

 

Figure 30.  

 
 Similar analysis of complex impedances obtained from the frequency dispersion on a 
passive stainless steel was carried out by Devaux et al.108 
 Stoynov109 has extended the CPE model for finite thickness diffusion. He introduced a so-
called bounded CPE (BCP) impedance or finite constant phase element: 
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where Rs is the solution resistance. In fact, at high frequencies, eqn. (182) reduces to a simple 
CPE, eqn. (177) and at low frequencies it reduces to Rs. For φ = 0.5 BCP has a similar form to 
that of the impedance in the case of the finite length diffusion. Just as the CPE represents infinite 
diffusion for φ = 0.5, the BCP represents finite length diffusion for the same value of φ. Complex 
plane plots for the BCP element are presented in Figure 31. This element has a physical meaning 
for φ < 0.6.19 
 

Figure 31.  

 
3. Fractal Model  

 Solid surfaces are usually irregular and their detailed geometry is not known. In order to 
describe their geometry the concept of fractals was introduced.110  This concept is based on self-
similarity of surfaces implying different scaling. The difference between simple and fractal 
magnification is shown in Figure 32.111  Simple magnification only increases the size of the 
object while the fractal magnification reveals its self-similarity at different scales. Such 
magnification process may continue. The line enclosing the object in Figure 32c is the so-called 
von Koch line;112,113  it is continuous, of infinite length and is nowhere differentiable. It is 
interesting to note that the observed (measured) length of the von Koch line is scaled in a 
complex way: its length depends on the yardstick used to measure it. In the example in Figure 32 
the object is magnified three times and the line length is magnified 4 times. This leads to the 
fractal dimension of the von Koch line DH = (ln 4)/(ln 3) = 1.262.111,114  In general, the fractal 
dimension of the line may be between 1 and 2. Such reasoning may also be used for surfaces for 
which the fractal dimensions may be between 2 and 3. Fractal geometry was introduced to 
electrochemistry by Le Méhauté et al.115 It was shown by Nyikos, Pajkossy and coworkers113,114, 

116-122 that fractal geometry of ideally polarizable (i.e. blocking) interfaces generates a CPE 
behavior described by eqn. (177) in Section V.2. However, it should be stressed that, in general, 
there is no simple relation between the fractal dimension DH and the parameter φ123 of the CPE 
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although higher fractal dimensions lead to smaller values of φ.114  The fractal theory was 
subsequently extended to irregular or quasi-random surfaces lacking well defined self-
similarity.119,120 Pajkossy and Nyikos124 carried out simulations of blocking electrodes with a self-
similar spatial capacitance distribution and found that the calculated impedances exhibited the 
CPE behavior. The fractal theory was also tested experimentally using fractal electrodes prepared 
by microelectronic techniques.118  
 Subsequently, the fractal theory was extended to faradaic processes.111,114,117,118,125,126 De 
Levie111,125 has shown that the impedance of a fractal electrode, in the absence of mass transfer 
control, is given as: 
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where the parameters b is given by: 

b f g= −ρφ 1 (184) 

ρ is the solution resistivity and fg is a factor depending on the fractal surface geometry110, which 
may be based on von Koch curves127, Cantor bars128,129,130, Sierpinski carpets131,132,133, etc.98 
When the surface is flat and homogeneous, φ = 1, fg =1, b = 1 and eqn. (184) reduces to eqn. 
(112). According to de Levie111 eqn. (183) may be applied to fractal electrodes in equilibrium, i.e. 
in the absence of the dc current which may introduce a local interfacial potential difference. 
When the exact fractal structure is unknown the parameter b cannot be obtained and the only 
parameters accessible are:  

C b Cexp dl= 1/φ    and   R b Rct exp ct,
/= 1 φ  (185)

 

Figure 32. 

 

Examples of the complex plane plots obtained for fractal electrodes are presented in Figure 33. 

 

Figure 33. 

 
With decrease of parameter φ the semicircles become deformed (skewed). The complex plane 
impedance plots obtained from eqn. (183), are formally similar to those found by Davidson and 
Cole134 in their dielectric studies. Kinetic analysis of the hydrogen evolution reaction on surfaces 
displaying fractal ac impedance behavior was carried out by Lasia and coworkers135-137  who 
obtained rate constants expressed as: k b ki exp i,

/= 1 φ . In order to compare the intrinsic activities 
of such electrodes with that of polycrystalline nickel the ratio of k C k Ci exp dl exp i dl, ,/ /=  was 
used. It was found that this ratio has similar values for Raney Ni and polycrystalline Ni, therefore 
the intrinsic activity of these electrodes is similar and the observed increase in activity of Raney 
Ni electrodes arises from their very large real surface area.  
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In general, self-similar fractal surfaces do not exists in the real world. The fractal models 
may only approximate random surfaces. Besides, eqn. (183) for φ = 0.5 is formally identical with 
the semi-infinite porous model presented below. The fractal model in the presence of diffusion 
was discussed in refs. 111 and 118. Experimental verifications of the fractal model were also 
carried out for some electrodes.118,121,138  It was also stated that the fractal dimension of the 
surface may be found from dc experiments.114,118,139,140 
 

4. Porous Electrode Model  
 In electrocatalysis there is a great interest in increasing the real surface area of electrodes. 
In such cases porous electrodes are used. Because modeling of real electrodes is difficult, a 
simpler model is usually used in which it is assumed that pores have cylindrical shape with a 
length l and a radius r. 24,141-145 
 In order to describe the impedance of such electrodes first a dc solution must be found. 
Two cases are considered below: (i) porous electrodes in the absence of internal diffusion and (ii) 
in the presence of axial diffusion. It is assumed that the electrical potential and concentration of 
electroactive species depend on the distance from the pore orifice only and there is always an 
excess of the supporting electrolyte (i.e. migration can be neglected). 
 
(i) Porous Electrodes in the Absence of Internal Diffusion 
 In this case it is assumed that the concentration of the electroactive species is independent 
of the distance along a pore. In the next Section we shall see when such an assumption is valid. 
The axially flowing dc current, I, which enters the pore, flows towards the walls and its value 
decreases with the distance x from the pore orifice, Figure 34.  
 

Figure 34.  

 
This decrease of the current is proportional to the current flowing to the wall: 

dI
dx

rdx j
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rj= − = −( )2 2π π  
(186)

where 2πrdx is the surface area of a pore section dx and j is the current density. Because of 
Ohm’s law a potential drop along the pore also arises: 
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(187)

where ρ is the specific solution resistance and (ρdx/πr2) is the resistance of the section dx of the 
solution in the pore. The last term in the parentheses in eqn. (187) may be called the solution 
resistance per unit length of the pore, R = ρ/πr2 and is expressed in Ω cm-1. Similarly, the current 
flowing through an element dx of the surface area, (2πrdx)j, may be represented as E/Z, where Z 
is the impedance of pore walls per unit of the pore length, in Ω cm. It can be shown that Z = 
Zel/2πr where Zel is the specific impedance of pore walls in Ω cm2. Zel consists of the faradaic, Zf, 
and the double-layer impedance: Zel = (1/Zf + jωCdl)-1.  
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(a) De Levie’s treatment 
 De Levie146 was the first to describe the impedance of porous electrodes. He represented 
eqns. (186) and (187) in the following form: 
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Taking the second derivative of eqn. (189) and substituting eqn. (188) one obtains: 
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This equation describes changes of the electrical potential as a function of pore length. De Levie 
assumed that the impedance of pore walls is independent of the pore distance (Z is not a function 
of distance) which implies that there is no net dc current. The solution is: 

E C CR Zx R Zx= +−
1 2e e/ /

^ ^

 
(191)

where C1 and C2 are the integration constants. Taking into account the boundary conditions: 

x = 0   E = E0 
and 
x = l   dE/dx = 0 
where E0 is the potential at x = 0, the dc solution is: 
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and 

dE
dx

E R

Z

R

Z
l I R

x

⎛
⎝⎜

⎞
⎠⎟

= −
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

= −
=0

0 0^ ^tanh  (193)

The total pore impedance, Zpor , is then obtained as: 
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This equation may be rearranged into: 
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( )Z
R
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where RΩ,p = ρl/πr2 and Λ = (2ρl2/r)/ Zel . It is evident that the faradaic impedance of pore walls 
was assumed potential independent despite the fact that the potential changes with the pore depth. 
The faradaic impedance may be obtained assuming that the Butler-Volmer equation describes 
adequately the electrochemical process. Although original development was carried out using 
electrode potential E, a more adequate representation of impedance would be with respect to the 
overpotential η: 
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Of course, under dc conditions, when ω = 0, Zel  = Rct. For the ensemble of n pores and in the 
presence of the solution resistance outside the pores, the total impedance becomes: 
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 Eqn. (195) predicts observation of a straight line at 450 at high frequencies, followed by a 
semicircle, Figure 35a.  
 

Figure 35.  

 
At low frequencies the impedance becomes real: 
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Behavior of the porous electrode depends on the penetration depth, λ, of the alternating signal 
into the pore. This parameter is defined as: Λ = l/λ, or λ = (r Zel /2ρ)1/2. Eqn. (195) has two 
limiting cases. First, when λ >> l, Λ → 0, coth(Λ1/2) → Λ-1/2, and the equation becomes: 
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where s = 2πrl is the total pore surface area. Eqn. (199) represents simply the impedance of a flat 
electrode having surface area s. In this case the ac signal penetrates to the bottom of the pore and 
the electrode behaves as a flat one; then its impedance may be described by a semicircle on the 
complex plane plot, Figure 35b. 
 Another limiting case is obtained when the penetration depth is much smaller than the 
pore length, λ << l, that is the pores behave as semiinfinite channels; then Λ → ¼, coth(Λ1/2) → 1, 
and: 
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In this case the complex plane plot presents a deformed semicircle, Figure 35c. In such a case, 
plotting Zi = |Z|2sin(2ϕ) vs.  Zr = |Z|2cos(2ϕ) gives a perfect semicircle.146 Eqn. (200) is formally 
identical with eqn. (183) for the fractal model with φ = 0.5 and these two models are 
indistinguishable.  
 In further papers the impedance of double-layer was substituted by the CPE: 
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An example of porous behavior was presented by Los et. al.147 for the hydrogen evolution 
reaction on LaPO4-bonded Ni powder electrodes in 30% NaOH. Examples of the complex plane 
plots are shown in Figure 36. Using the CNLS fit, the parameters Rct, T, and Cdl  were determined. 

 

Figure 36.  

 

(b) Rigorous treatment 

 It is obvious that the de Levie’s treatment is an approximation, because Z f , and in 

consequence Zel , are potential dependent. In the rigorous treatment, eqns. (186) and (187), 
should be solved. The second derivative of eqn. (187), written using the Butler-Volmer 
expression for current and overpotentials is:148,149 

[ ] [ ]d
dx r

j
j

r
j

r
nf nf b b

2

2
0 1 02 2 2

1 2
η ρ ρ ρα η α η η η= = − = −− − −e e e e( )  

(202)

Assuming that α = 0.5 and b = 0.5nf, eqn. (202) may be written in a simpler form as: 
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The first integration of eqn. (202) gives, taking into account that at x = l, dη/dx = 0 and ηl = η(l): 
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Eqn. (204) may be solved analytically only for the case of semiinfinite length of pores and for α 
= 1/2, 1/3 and 2/3.144  In a general case, it may be solved numerically. Let us consider now the 
case of semiinfinite pores, i.e. when the potential at the bottom of the pore drops to zero, ηl = 0. 
In this case eqn. (204) may be rearranged to: 
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which has a solution: 
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It may be noticed that the eqn. (206) is formally identical with that developed for the Gouy-
Chapman theory of the double-layer. Substitution of eqn. (189) into (205) gives the expression 
for the steady-state current on porous electrodes: 
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which gives, at negative potentials, the Tafel slope of 2 ln(10)/αf = 0.118/α V at 25°C. This result 
indicates that the Tafel slope on porous electrodes is doubled over its normal value. 
 Knowing the potential distribution in pores, the pore impedance may be obtained by 
numerical summation of the impedances of small sections ∆x of the pore walls, starting from the 
bottom of the pore:  
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where ,Zel i  is the specific electrode impedance at the distance x. The solution obtained may be 
compared with de Levie’s solution, eqn. (195). Complex plane plots obtained for the same 
conditions using two different approaches are displayed in Figure 37. 
 
Figure 37.  
 
The analysis of the results indicates that the resistance at ω = 0, Rp, obtained using the correct 
analysis is twice that found from de Levie’s equation. Besides, the plot of squared impedances 
produces a deformed ellipsoid, instead of a perfect semicircle. It has been shown147 that the 
CNLS fit of the simulated impedances to the de Levie equation (195) is not good, there being 
systematic differences between these two curves, Figure 37. However, when the CPE is used 
instead of the double-layer capacitance, the approximation is good. The values obtained for of the 
parameter φ are between 0.91 and 0.93.149 In this case the use of the CPE only hides the 
inadequacy of the model. 
 
(ii) Porous Electrodes in the Presence of Axial Diffusion 
 During electrolysis, concentration changes in the pores. This problem has been addressed 
in numerous papers.148,150-155 Simplifications such as assuming totally irreversible reaction 
kinetics, semiinfinite pores or assuming that the concentration gradient in pores is exponential 
were usually made. Recently, Lasia156 solved the problem for a quasi-reversible process and a 
finite pore length. It was assumed that the electrode process could be described by the current-
overpotential equation: 
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where Ci and Ci
* represent surface and bulk concentrations of Ox and Red, respectively. 

Assuming that the diffusion coefficients of the two forms are identical, eqn. (209) can be 
rearranged into: 
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where a = CO/C*
O and m = C*

O/C*
R. The current flowing through the section dx of the pore walls 

is related to the changes of concentration: 
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or taking into account diffusion: 
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which, under steady-state conditions, reduces into: 
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The potential drop in the pore is still described by eqn. (202), with the current given by eqn. 
(210). Eqns. (202) and (213) may be combined together as: 
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Eqn. (214) has the analytical solution: 
( )η η ν− = −0 1a  (215)

which allows elimination of one variable from eqns. (202) and (213). In a general case the first 
integration may be carried out analytically and the next numerically. The derived dependence of 
η and a as functions of distance may be used to calculate the impedance.  
 The value of the parameter ν determines whether the porous behavior is determined by 
the potential or concentration drop. When ν << 1V the system behavior is determined principally 
by the concentration gradient and when ν >> 1 V it is determined by the potential drop. For 
typical conditions: D = 10-5 cm2 s-1, ρ = 10 Ω cm and C* = 10-3 to 10-2 M, ν ~ 10-5 to 10-4 V. For 
these conditions the porous behavior is determined by the concentration gradient and the potential 
gradient down pores is negligible. Only for the extreme conditions where the solvent or the 
supporting electrolyte (at high concentration) undergo the red-ox reaction, may the process be 
limited by the potential drop in the pores. 
 In a limiting case when the potential drop in the pore may be neglected, an analytical 
solution of eqn. (213) may be obtained: 
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Knowing the dc solution, the electrode impedance may be calculated. As usual, the current, eqn. 
(212), must be linearized: 
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Then, the expression for the impedance is obtained as: 
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In order to find a solution for the oscillating concentration, eqn. (212) must be solved for ∆a. 
Substitution and rearrangement gives: 
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or 
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with the boundary conditions: 
x = 0   ~y = 0  
and 
x = l   dy dx~ / = 0  
The analytical solution of eqn. (221) is: 

( )[ ]
( )

a L
K

K l x

Kl

~

~
cosh )

coshη
= − +

−⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
1  

(223)

Now, substitution into eqn. (219) gives the faradaic impedance and using eqn. (208) the total 
impedance may be calculated numerically. The presence of the concentration gradient in the 
pores produces two potential-dependent semicircles, Figure 38 andFigure 39. It should be added 
that at high frequencies still a part of a straight line at the angle of π/4 may be observed as in 
Figure 39. 
 In real cases the problem is much more complicated, because various pores are present 
and, in fact, a pore size distribution and the exact surface morphology is unknown. 
 

Figure 38.  

 

Figure 39.  
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(iii) Other Pore Geometries 
 For pores of geometry different from cylindrical, at high frequencies where the impedance 
is determined by the double-layer charging, instead of a straight line some forms of arc may also 
be obtained. 
 The impedance of a V-grooved electrode was studied by de Levie.157  Such surfaces may 
be prepared, for example, by abrasion. De Levie described the impedance of a groove per unit 
groove length as: 
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where ρ is the specific solution resistance, β is the angle between groove wall and the normal to 
the surface, I0 and I1 are the modified Bessel functions of zero and first order and: 

λ
ρ

β
= 2 l

Zs
 (225)

l is the groove depth (normal to the surface) and Zs is the double-layer impedance per unit of true 
surface area. Eqn. (225) reduces to the impedance of a perfectly flat surface for β = 900 and to the 
impedance of cylindrical porous electrode for β = 00. Recently, Gunning158 obtained an exact 
solution of the de Levie grooved surface in the form of an infinite series. Comparison with the de 
Levie equation shows that the deviations arise at higher frequencies. 
 Keiser et al.159 studied the impedance of arbitrary shaped pores. They simulated the 
complex plane plots in the absence of a faradaic process, Figure 40. Instead of a straight line at 
45°, observed for cylindrical pores at high frequencies, different forms of plateaux or a semicircle 
were observed. 
 

Figure 40.  

 
 Eloot et al.160 suggested a new general matrix method for calculations involving 
noncylindrical pores, in which the pore is divided into sections and for each section a 
transmission line model with constant impedances was used. Direct simulations of the 
impedances for porous electrodes were also carried out using a random walk method.161,162 
 

5. Generalized Warburg Element 
 Macdonald18 introduced a generalized finite-length Warburg element described as: 
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to describe non-uniform diffusion under finite-length transmissive conditions, where Rs is the 
solution resistance. For φ = 0.5, ( )A l R Ds0 = / , and it represents a finite-length diffusion. Non-
uniform diffusion arises for example when the diffusion coefficient is a function of the distance. 
This equation is formally identical with Stoynov's finite constant phase element BCP, eqn. (182). 
However, Stoynov109 stated that eqn. (226) represents uniform finite-length diffusion and not the 
non-uniform diffusion case. 
 A similar equation but containing the function coth was used by Inzelt and Láng163 to 
describe the diffusional impedance of conducting polymers under reflective conditions (see 
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Section III.6(ii) and eqn. (99)). An electrical model containing this element accounted well for 
the impedance spectra with a minimal number of free parameters. 
 Although models including impedance represented by eqn. (226) may well describe some 
experimental data, the physical significance of the parameter A0 for φ < 0.5 is not clear . 

VI. CONDITIONS FOR "GOOD" IMPEDANCES 
1. Linearity, Causality, Stability, Finiteness 

 The impedance technique is often applied to various electrochemical systems which were 
never studied before. The complex plane and Bode plots obtained often display shapes that had 
never been encountered previously. Before starting the analysis and modeling of the 
experimental results one should be certain that the impedances are valid. There is a general 
mathematical procedure which allows for the verification of the impedance data. It was 
introduced by Kramers164 and Kronig,165 further developed by Bode166 and later applied to 
EIS.18, 167-177 During the impedance measurements a small ac perturbation is applied to the 
system. The impedance derived is valid provided that the following four criteria are met:33,169 
• Linearity: A system is linear when its response to a sum of individual input signals is equal to 

the sum of the individual responses. This also implies that the system is described by a system 
of linear differential equations (see e.g. eqns. (2) and (7)). Electrochemical systems are 
usually highly nonlinear and the impedance is obtained by linearization of equations (see e.g. 
eqns. (42) and (130)) for small amplitudes. For the linear systems the response is independent 
of the amplitude. It is easy to verify the linearity of the system: if the obtained impedance is 
the same when the amplitude of the applied ac signal is halved then the system is linear. 
Besides, linear systems cannot exhibit hysteresis in their response at ω = 0. 

• Causality: The response of the system must be entirely determined by the applied 
perturbation, that is the output depends only on the present and past input values. The causal 
system cannot predict what its future input will be. Causal systems are also called physically 
realizable systems. If the system is at rest and a perturbation is applied at t = 0, the response 
must be zero for t < 0. In the complex plane the above criterion requires that, for t < 0, ω = 0. 
Moreover, the integral on and inside a closed path C of an analytic function (i.e. it has a 
derivative at each point)178 must be equal to zero: 
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If the function Z(s) has singularities then the sum of the residuals of the poles ai must equal 
zero: 
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Eqns. (227) and (228) are mathematical forms of causality. The system is casual if it does not 
have any singularities, eqn. (227), or the sum of residues is zero, eqn. (228). Physical meaning 
of these equations is that the system does not generate noise independent of the applied signal. 

• Stability: The stability of a system is determined by its response to inputs. A stable system 
remains stable unless excited by an external source and it should return to its original state 
once the perturbation is removed and the system cannot supply power to the output 
irrespective of the input. The system is stable if its response to the impulse excitation 
approaches zero at long times or when every bounded input produces a bounded output. 
Mathematically this means that the function does not have any singularities that cannot be 
avoided. The impedance Z(s) must satisfy the following conditions: Z(s) is real when s is real 
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(that is  when ω → 0) and Re[Z(s)] ≥ 0 when ν ≥ 0 (s = ν + jω, see Section I.1(i)). This last 
condition ensures that there are no negative resistances in the system. The impedance 
measurements must also be stationary, that is the measured impedance must not be time 
dependent. This condition may be easily checked by repetitive recording of the impedance 
spectra; then the obtained Bode plots should be identical.  

• Finiteness: The real and imaginary components of the impedance must be finite-valued over 
the entire frequency range 0 < ω < ∞. In particular, the impedance must tend to a constant real 
value for ω → 0 and ω → ∞.  

 
2. Kramers-Kronig Transforms 

 The Kramers-Kronig relations hold provided the four above constraints are satisfied and 
allow the calculation of the imaginary impedance from the real part: 
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the real impedance from the imaginary part, if the high frequency asymptote for the real part is 
known: 
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the real impedance form the imaginary part, if the zero-frequency asymptote of the real part is 
known: 
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the polarization resistance Rp from the imaginary part: 
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or the phase-angle from the magnitude (modulus): 
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Similar transformations may also be carried out for admittances. Such procedures are 
important when the impedance goes to infinity at low frequencies (blocking electrodes, CPE, 
semi-infinite mass transfer, etc.). The major difficulty in applying the Kramers-Kronig relations 
is that the integration must be performed over the whole frequency range from zero to infinity. 
However, the impedance results are known only over a finite frequency range. The discrepancies 
that arise may be attributed to the errors of integration or to failure to satisfy the four above 
conditions. 
 Kendig and Mansfeld179 used eqn. (232) and supposed that the imaginary impedance is 
symmetric. They carried out integration between the frequency corresponding to the maximum 
of the imaginary impedance and infinity, and multiplied the result by two. However, their 
method is limited to systems containing one time constant. 

Macdonald et. al.167-169 and Dougherty and Smedley177 used a polynomial approximation 
of the impedance function, followed by analytical integration of the polynomials. However, 
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extrapolation of polynomials over a large frequency range may be unreliable. Haili180 
extrapolated Z'' as proportional to ω as ω → 0 and as inversely proportional to ω as ω → ∞ and 
Z' → Rs.  

Esteban and Orazem170,171 proposed using eqns. (230) and (231) simultaneously to 
calculate the impedance below the lowest measured frequency, ωmin, and continue the integration 
procedure to three or four decades of smaller frequency, ω0. The latter parameter is chosen in 
such a way that the real impedance goes to a constant value while the imaginary impedance goes 
to zero at ω0.  

Later, Orazem and coworkers 175,181,182 used an approximation to the experimental 
impedance by the Voigt model (Figure 41) followed by a transformation of the model data. To 
take into account the inductive loops they proposed using negative resistances. This method was 
applied to approximate the impedance from various circuits containing resistive, capacitive and 
inductive elements, Warburg impedance, CPE, etc. Because each parallel R-C circuit is 
transformable, the entire circuit must also be transformable. In this method the explicit Kramers-
Kronig integration is replaced by the fit to the Voigt model. If the data cannot be well 
approximated, it means that they are not transformable. Such an approximation may be written 
as: 

 

Figure 41. 
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where τk = RkCk and M is the number of R-C elements used in the Voigt circuit to approximate 
the experimental impedance. The problem with this approach is the initial selection of Rk and Ck 
parameters in the complex nonlinear least-squares approximation, which are unknown. Similarly, 
Boukamp and Macdonald183 proposed an approximation of the experimental impedances using a 
distribution of relaxation times. They represented the function G(τ) in eqn. (173), written for 

immittances, as a sum of M discrete delta functions: G gm m
m

M
( ) ( )τ δ τ τ= −∑

=1
, where gm are 

dimensionless weighting coefficients and τm characteristic time constants to be determined. 
This method was further modified by Boukamp184 who also used the Voigt circuit but 

with a fixed distribution of time constants τk, that is the time constants were defined and the 
adjustable parameters were Rk. Parameters τk were chosen as equal to the inverse of the 
experimental angular frequencies ωk, which are usually logarithmically distributed (5 to 10 per 
decade). Under such conditions eqns. (234) and (235) become linear in the Rk values and the 
problem of approximation reduces from iterative nonlinear to a linear single matrix inversion. 
The method is quite robust with respect to the choice of the distribution and range of τk values. 
In practice 6 to 7 time constants per frequency decade (τk = 1/ωk) should be selected to get a 
good approximation. Through inspection of the relative residual plots it is possible to isolate data 



53 

that do not comply with the Kramers-Kronig transformations. The sign of Rk parameters is not 
important but the time constants are always positive (by definition), the negative τk could mask 
some non Kramers-Kronig transformable behavior. 

Macdonald185 proposed another form of the Kramers-Kronig integrals in which 
integration to infinity and the poles are avoided.  

In the case of blocking electrodes the impedance goes to infinity as ω → 0. For such 
electrodes the admittance Kramers-Kronig transformation could be used. Alternatively, a suitable 
parallel resistance could be added to the system (in such a system the impedance must always be 
real and equal to this shunt resistance at ω = 0) and then carry out the transformation of the data 
obtained.186  
 In general, Kramers-Kronig transforms constitute a very sensitive criterion of the validity 
of the ac impedance data. An example of such analysis is shown in Figure 42.177 
 

Figure 42.  

 
 It has been shown that instead of Kramers-Kronig transforms another method involving a 
coherence function28,187 could be used to validate the data. The coherence function, γ, is defined 
as:188,189 
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where Sxx  is the average input signal power spectrum, S yy  is the average output signal power 

spectrum, Sxy  is the average crosspower spectrum, symbol * denotes the complex conjugate, 

and Sxx(ω) is the power spectrum of parameter x as defined by its Fourier transform X: 

S X Xxx ( ) ( ) ( )*ω ω ω=  (237)

The power spectra may be directly obtained using dynamic signal analyzers which measure 
signals as a function of time and perform the fast Fourier transform. The coherence function 
takes values between zero and one and it characterizes statistical validity of the frequency 
response measurements: it is equal to one when perfect coherence exists. This function may be 
used when the Fourier-transformed data exist and the Kramers-Kronig transforms are difficult to 
use (unbounded impedance, truncated data, etc.).187 
 

3. Non-Stationary Impedances 
 As mentioned above the measured system should be stationary and should not evolve 
with time. In practice, such conditions cannot always be met. For example, corrosion process 
may continue during the experiment and change the measured impedance. Such measurements 
should be carried out quickly. However, very often the most interesting features are observed at 
low frequencies and the experiment may take hours. In such cases it is possible to follow 
evolution of impedances with time at one frequency and then repeat the experiment many times 
at different frequencies.190 In order to use such a method the initial conditions must always be the 
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same. This method was applied recently to follow the electrochemical impedance of a guillotined 
aluminum electrode.190  Stoynov et al.191-194 introduced a new mathematical method for non-
stationary impedances involving four-dimensional analysis and so-called rotating Fourier 
transforms. Although the simulations were carried out they were not applied in experimental 
studies of non-stationary systems. 
 

VII. MODELING OF EXPERIMENTAL DATA 
1. Selection of the Model 

 The aim of the analysis of the EIS data is to elucidate the electrode process and to derive 
its characteristic parameters. It should be stressed here that the EIS is a very sensitive technique 
but it does not provide a direct measure of the physical phenomena. Other electrochemical 
experiments (dc, transients) should also be carried out, together with good physical knowledge of 
the system (solution and surface composition, thickness, porosity, presence of various layers, 
hydrodynamic conditions, etc.). Interpretation of impedance data requires use of an appropriate 
model. This is a quite difficult task which must be carried out very carefully.  

The modeling may be classified as: (i) physico-chemical, process175,181,195,196 or 
structural19,197,198,199 modeling and (ii) measurement,195,196 formal19 or mathematical200,201 
modeling. Process modeling links measured impedances with physicochemical parameters of the 
process (kinetic parameters, concentrations, diffusion coefficients, sample geometry, 
hydrodynamic conditions, etc.). Measurement modeling explains the experimental impedances in 
terms of mathematical functions in order to obtain good fit between the calculated and 
experimental impedances. In the latter case the parameters obtained do not necessarily have a 
clear physico-chemical significance.  

Ideally, first the measurement modeling should be carried out, the number and the nature 
of the circuit elements should be identified and then the process modeling should be carried out. 
Such a procedure is relatively elementary for a circuit containing simple elements: R, C, and L. It 
may also be carried out for the circuits containing distributed elements that can be described by a 
closed form equation: CPE, semiinfinite, finite length or spherical diffusion, etc. However, many 
different conditions arise from the numerical calculations, e.g. for porous electrodes (correct 
solution), nonlinear diffusion (to disk, cylinder, etc.) or nonuniform diffusion, nonhomogeneous 
materials (conducting polymers), etc. In such cases a priori model predictions are difficult or 
impossible. It should be stressed that proper modeling is the most difficult part of the analysis, 
and is often misunderstood and wrongly interpreted. 

Usually, an equivalent circuit is chosen and the fit to the experimental data is performed 
using the complex nonlinear least-squares technique (CNLS). However, the model deduced from 
the reaction mechanism may have too many adjustable parameters while the experimental 
impedance spectrum is simple. For example, a system with one adsorbed species, Section IV.2, 
may produce two semicircles in the complex plane plots, but experimentally only one semicircle 
is often identified. In such a case approximation to a full model introduces too many free 
parameters and a simpler model containing one time constant should be used. Therefore, first, 
the number and nature of parameters should be determined and, then, the process model 
constructed in consistency with the parameters found and the physico-chemical properties of the 
process. 
 Another problem of data modeling is connected with the fact that the same data may be 
represented by different equivalent circuits.200 For example, the system containing one capacitive 
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loop, Figure 4, may be exactly described by either of the two equivalent circuits shown in Figure 
43.  
 

Figure 43.  

 
In fact, that the admittance of these two circuits may be written in the general form: 
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where 
a1 = R1

-1, a0 = 1/(C2R1R2) and b0 = (R1
-1 + R2

-1)/C2 for circuit (a) 
or 

a1 = R1
-1 + R2

-1, a0 = 1/( C2R1R2) and b0 = 1/(R1C2) for circuit (b) 

(239) 

and these two cases are indistinguishable. Equation (238) indicates that there is only one time 
constant of the system (see eqn. (25)). Similarly, a system displaying two capacitive loops, i.e. 
having two time constants, Figure 23, may be adequately described by the three circuits in Figure 
44. 
 

Figure 44.  

 
Their admittance may be written as: 
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And the behaviors of these three circuits are also indistinguishable, that is for a proper choice of 
the parameters they display the same impedance spectrum over at all frequencies. 
 Circuits the most often used in measurement modeling are: the Voigt, ladder and 
Maxwell circuits, as presented in Figure 45. 
 

Figure 45.  

 
Zoltowski200 proposed using ladder circuits for measurement modeling, substituting circuit 
resistances and capacitances by the CPE elements. 
 Very often modeling depends on the errors of the experimental data. Orazem et al.196 
studied approximation of synthetic data corresponding to the impedance response of a single 
electrochemical reaction on a rotating disk electrode under the conditions of nonuniform current 
and potential distribution. The complex plane plot represented a depressed semicircle The 
authors found that the input data could be quite well approximated by a circuit consisting of a 
solution resistance in series with the parallel connection of a resistance and a CPE element (see 
Figure 28) and three other circuits containing two time constants (ladder, Voigt and mixed). 
These authors also studied a more complex case. They stated that the ambiguity demonstrated 
above is common to model identification for all electrochemical measurements and presents the 
greatest challenge for the analysis of impedance data. For example, impedance of a porous 
electrode may be described by the Voigt circuit with a sufficient number of R-C elements or by 
eqn. (195). Development of a proper model requires knowledge of the chemistry and physics of 
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the system, some prior information about it and good understanding of the characteristics of the 
measured values. Such a model identification procedure should be supported by a series of 
measurements at different potentials, temperatures, concentrations, disk rotation rates, etc.  
 Stoynov and collaborators19,197-199 developed mathematical methods for the structural and 
parameter identification from impedance data. They also used spectral analysis which could 
identify the number and nature of time constants existing in the system. 
 Direct use of equivalent circuits may lead to more complex data analysis. For example, 
for a system containing one adsorbed species, eqn. (139), may be described by the ladder circuit 
shown in Figure 21. The parameters Ra and Ca describing the faradaic impedance, eqn. (141), are 
complex functions of the parameters A, B, and C while direct use of eqn. (135) leads to simpler 
data analysis, i.e. parameters A, B, and C are simpler functions of the kinetic parameters than the 
electric parameters Ra and Ca.  
 

2. CNLS Approximations 
(i) CNLS Method 
 After validated data are obtained one can proceed with modeling. To do this a complex 
nonlinear least-squares (CNLS) program is used.18,202-204  This is a nonlinear least-squares fit of 
the real and imaginary parts, or magnitude and phase-angle of the experimental 
impedance/admittance to a given model. In general, the sum of squares: 

[ ] [ ]S w Z Z w Z Zi i i calc i i i calc
i

N
= − + −

⎧
⎨
⎩

⎫
⎬
⎭

∑
=

' ' ''
,
' ''

,
''2 2

1
 (241) 

must be minimized, where Z'i and Zi'' are the real and imaginary parts of the experimental 
impedances at the frequencies ωi, Z'i,calc and Z"i,calc are the values calculated from a given model, 
w'i and wi" are the statistical weights of the data, and the summation runs over all N 
experimentally used frequencies. The minimization is most often carried out using the iterative 
Marquard-Levenberg algorithm. 202,203,205  Because of the iterative nature of the algorithm the 
initial choice of the parameters is very important: they must lie relatively close to the real values, 
otherwise the CNLS method may become divergent. Usually, a simpler model is first used, 
several parameters determined, then they are kept constant as new parameters are added and, 
finally, all the parameters are used as adjustable. Such a procedure may be tricky and in some 
cases local minima are found. In such cases it is advisable to repeat the approximation starting 
with different initial parameter values. If the process converges to another minimum, the relative 
values of the weighted sum of squares or χ2 should be compared. Sometimes vary flat minima 
are obtained leading to large values of the relative standard deviations of the measured 
parameters. 
 Another problem is connected with the goodness of fit and the number of free parameters 
used in the approximating function. The identification procedure may give the number and 
nature of the elements in the circuit. The number of adjustable parameters should be kept to a 
minimum.  Usually, the approximation starts with the smallest possible number of parameters, 
then an additional parameter is added and the decrease in the sum of squares must be compared. 
Such decrease must be statistically important. It may be tested using the F-test for the additional 
parameter.206. Addition of some elements in the circuit may be connected with addition of more 
than one parameter. The F-test of addition of k parameters to the approximating function is 
described as: 
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where S(N-p) is the sum of squares, eqn. (241), for p parameters and N-p degrees of freedom, 
S(N-p-k) is the sum of squares for p+k free parameters and N is the number of points. This 
parameter should be compared with function F(k,N-p,α) for k and N-p degrees of freedom, and a 
level of confidence α, from the statistical tables. If Fexp is lower than F(k,N-p), the hypothesis 
that the function has p+k parameters must be rejected. This test should be applied with prudence 
and always the smallest possible number of added parameters k should be used. It may happen 
that when k parameters are added only the first one increases the value of Fexp > F(1,N-p,α), 
although for k parameters Fexp is also > F(k,N-p,α). 

 Besides comparing the sum of squares the comparison of the experimental and simulated 
data should be carried out using complex plane and Bode plots. The phase-angle Bode plot is 
particularly sensitive in detection of time constants. Boukamp203 proposed to study the residual 
sum of squares after subtracting the assumed model values from the total impedance data. If the 
model is valid the residuals should behave randomly. If they display regular tendencies it may 
mean that the model is not correct and further elements should be added. However, the variations 
of the residuals should be statistically important. 
 Macdonald207 studied precision of the parameters determined by the EIS. He added a 
noise to the simulated impedance data and used the CNLS technique to determine the parameters 
together with their standard deviation. Using this technique it was possible to determine how the 
impedance errors are transferred to the determined parameters, depending on their relative 
values. This method allows sensitivity of the parameters to the random noise to be determined. 
 
(ii) Statistical Weights 

The choice of statistical weights in the CNLS fit is very important. Because the measured 
impedances may vary at different frequencies over several orders of magnitude when unitary 
weights (wi = 1) are used, only the largest impedances contribute to the sum of squares S. In such 
a case low time constants may be overlooked. In general, several repetitions of the experiment 
allows for the determination of the standard deviation of each point (σi' and σi") and the 
statistical weights may be obtained as: wi

' = (σi')-2 and wi" = (σi")-2. Although this is the best 
approach such a procedure is time consuming and rarely used in practice. Another alternative 
proposed by Macdonald18 was to use proportional weighting, that is taking weights inversely 
proportional to the measured or estimated impedances: wi = 1/Zi

2  or wi = 1/Z2
i,calc. Such 

weighting methods mean that the real and imaginary parts of the impedance may be 
independently determined and that their precisions are independent. However, in practice, these 
parameters are often measured using the same sensitivity for both components; therefore, a better 
weighting procedure may be use of modulus weighting: wi = 1/(Z' 2 + Z" 2) .203,208   

Orazem and coworkers195,196,209,210 studied the error structure of the impedances measured 
using a Solartron FRA. They found that the standard deviations of the real and imaginary 
impedances are identical and may be described by: 
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where α, β and γ are constant parameters determined for a given instrumental system and Rm is 
the value of the current-measuring resistor. Such an error structure was verified for solid state 
and electrochemical systems under a wide variety of experimental conditions, and for errors 
ranging form mΩ to MΩ, and allowed for better determination of system parameters. 
 
(iii) AC Modeling Programs 
 Several programs for the EIS modeling are available:  
• J.R. Macdonalds's program18,202, written in FORTRAN, source code available. It contains 

various models already predefined, many weighting possibilities, and allows for easy 
modifications of the subroutines for the model impedance calculations. FORTRAN is a 
language which contains intrinsically complex number calculations which facilitates the 
programming process. Its disadvantage is a special formatted data input (however, it can be 
easily corrected). 

• Boukamp' program203
 written in Pascal, distributed with EG&G software, is very popular. 

Equivalent circuits are constructed from several predefined elements. There is no possibility 
of changing the subroutines or introducing new equations. 

• Scribner Associates, Inc. developed a software (Zplot) for data acquisition and analysis. It is 
based on Macdonald's algorithm and the data analysis was simplified. It uses a number of 
predefined circuits without the possibility of modification. 

• Sirotech Ltd.211 developed a software which performs a similar task and is able to choose the 
best equivalent circuit. 

• Several software packages (often with very limited modeling capabilities) come with the 
hardware, e.g. from Gamry Instruments, Inc.: EIS900; BAS-Zahner (Thales); Eco Chemie 
BV: Autolab; Tacussel: Z-Computer, etc. 

• Some other programs have been developed in the literature without being widely 
commercialized.204,212-215 

 
VIII. INSTRUMENTAL LIMITATIONS 

 EIS measurements should be carried out over a wide frequency range in order to identify 
all time constants in the circuit (usually 10 frequencies per decade). The highest frequency 
depends on the potentiostat used, because at high frequencies, it may introduce a phase shift, and 
on the stray capacitance and inductance of the experimental setup (cables, cell, etc.). A typical 
range in modern systems is 20 to 50 kHz, although they may range to MHz. With increase of 
sensitivity the potentiostats tend to slow down and the response on a 10 mA current scale is 
much faster than that on 10 µA scale. Much higher frequencies up to 10 MHz were used by 
Bara½ski et al.216,217 but the experiments were carried out without a potentiostat on 
ultramicroelectrodes. Corrections for slow response of the potentiostat may be carried out and 
increases the effective bandwidth by about one order of magnitude.218  If the response of the 
electronic system is linear the parasitic impedances, Zin  and Zoc , together with the complex 
sensibility, S , Figure 46, may be obtained from: 

S Z Z

Z Z

m in

el oc

^ ^ ^

^ ^

= +
+

1
1 1  (244) 
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where Zm  is the measured impedance and Zel  is the impedance of the electrochemical cell. 
Three measurements: one in the open circuit and two with two different resistances instead of 
Zel  allow the determination of three unknown complex parameters and further correction of the 
measured impedance. Such corrections should be repeated at each frequency and the cable 
configuration used for calibration should be the same as for the electrochemical measurements. 
Another method involving two working electrodes for high frequency (≤ 5 MHz) impedance 
measurements was proposed by Schöne and Wiesbeck.219 
 

Figure 46.  

 
 The lowest frequency typically used is 10-3 Hz. This limit is connected with the possible 
changes in the state of the electrode during long-period measurements. At this frequency 
measurements averaged over five wave periods take 1 hour 23 min. The measurement at all 
frequencies takes a much longer time. 
 The use of FRAs may lead to erroneous results when the frequency is swept too fast.30,220 
The change of frequency may lead to a transient regime. If the measurements are performed 
during this transient, error is introduced into the results. It depends on the initial phase of the 
sinusoidal excitation. It can be neglected when 10 cycles of signal integration and at least five 
steps per decade are used in measurements. This error becomes negligible at higher frequencies 
(> 10 Hz for the Solartron) because of the internal delay of the measurements at each frequency. 
 It is relatively easy to get good precision of measurements for impedances between 1 and 
105 Ω at frequencies below 5×104 Hz. However, for lower and higher impedances, distortions 
may be observed. Very high impedances are found, for example, in measurements of protective 
coatings on metallic surfaces and very low impedances are found in molten salts. The errors for 
high impedance measurements originate from the finite potentiostat input impedance. Such 
resistance should be at least 100 times larger than the measured impedance; if not, a calibration 
procedure is necessary.  
 Another distortion is observed at very low impedances, corresponding to an inductance in 
series with the electrode impedance. It is observed at high frequencies and leads to large positive 
imaginary impedances.221,222 This inductance arises form that of the leads and the current 
measuring resistor. Such effects may be often minimized by shortening the cables and shielding 
the reference electrode. 
 The distance between the working electrode and the Luggin capillary may also affect the 
impedance measurements and lead to artifacts.223 In principle, increase of the distance between 
the Luggin capillary tip and working electrode should only increase the solution resistance, 
which shifts the complex plane plot along the real axis. Figure 47 presents examples of the 
complex plane plots obtained at several distances in acetic acid.  
 

Figure 47.  

 
Such behavior arises from the contribution of the reference electrode to the measured 
impedances and it was explained introducing the resistance and capacitance of the reference 
electrode and a capacitive coupling between the reference electrode and counter and working 
electrodes.223  Similar artifacts, observed at high frequencies, are also observed in highly 
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conducting solutions224 when the Luggin capillary is located too close to the electrode surface. 
They can be minimized by inserting a thin platinum wire into the Luggin capillary and the salt 
bridge.224-226 
 

IX. CONCLUSION 
 EIS has become a mature and well understood technique. It is now possible to acquire, 
validate and quantitatively interpret the experimental impedances. The above review was 
dedicated to the understanding of the fundamental processes of diffusion and faradaic reaction at 
electrodes. However, the most difficult problem in EIS is modeling of the electrode processes, 
that is where most of the problems and errors arise. There is almost an infinite variety of 
different reactions and interfaces that can be studied (corrosion, coatings, conducting polymers, 
batteries and fuel cells, semiconductors, electrocatalytic reactions, chemical reactions coupled 
with faradaic processes, etc.) and the main effort is now applied to understand and analyze these 
processes. These applications will be subject of a second review by the author in a forthcoming 
volume in this series. 
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Figure 1. Representation of ac signals: (a) rotating voltage and current vectors in time space; (b) 
voltage and current phasors in frequency space. 
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Figure 2. Complex plane (b), (c) and Bode (d), (e), plots for a series connection of a resistance 
and a capacitance, (a) ; R = 100 �, C = 20 �F. 
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Figure 3. Complex plane (b), (c) and Bode (d), (E), plots for a parallel connection of R and C (a); 
R = 100 �, C = 20 �F. 
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Figure 4. Complex plane (b), (c) and Bode (d), (e), plots for the circuit (a); Rs = 10 �, Rct = 100 
�, Cdl = 20 �F. 
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Figure 5. Construction of the Bode magnitude plot for the circuit in Figure 4a using eqn. (26). The 
solid line is a sum of all three contributions. 



 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 

Figure 6. Schematic operation of a lock-in amplifier. 
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Figure 7. Frequency response of a FRA averaging filter for different numbers of integration 
cycles.44 



 

 

 

Figure 8. FFT amplitude, |H(j�)|, of the pulse function, eqn. (38), of duration T0 = 1 s. 



 
 
 
 
 
 
 

Figure 9. FFT analysis of the sum of sine waves perturbation; left - no optimization, right - 
optimization of phases; a) perturbation voltage in the time domain, b) perturbation voltage in the 
frequency domain, c) complex plane plots of simulated impedance spectra with 5% noise added 
to the current response. Solid lines show response without noise.51 



 
 
 
 
 

Figure 10. FFT analysis of the sum of sine waves perturbation; left - no optimization, right - 
optimization of amplitudes; a) perturbation voltage in the time domain, b) perturbation voltage in 
the frequency domain, c) current response with 10% noise added, presented in frequency domain, 
d) complex plane plots of simulated impedance spectra with 10% noise added to the current 
response. Solid lines show response without noise.51 
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Figure 11. Complex plane (b) and Bode (c), (d), plots for the semi-infinite linear diffusion model 
(a); in (b) continuous line: total impedance, dashed line: faradaic impedance; Rs = 10 �, Rct = 100 
�, Cdl = 20 �F, � = 10 � s-1/2. 
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Figure 12. Dependence of logarithms of Rct and |ZW| on potential for � = 0.4. 
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Figure 13. Complex plane (a) and Bode (b), (c) plots for semi-infinite spherical diffusion; 
sphericity parameter 2 0D ri / : (a) � - linear diffusion, (b) 0.02, (c) 0.05, (d) 0.1, (e) 0.2 s-1/2; Rs 
= 10 �, Rct = 100 �. 

 



 

 

 

 

Figure 14. Faradaic (dashed line) and total (continuous line) impedance for a reversible reaction 
in the conditions of semi-infinite cylindrical diffusion, Rs = 10 �. 



 

 
 

Figure 15. Faradaic (dashed line) and total (continuous line) impedances in the conditions of the 
diffusion to a disk and a reversible charge transfer. 
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Figure 16. Faradaic (a) and total (b)-(d) impedances for: a) - linear semi-infinite, b) - finite 
transmissive, and c) - finite reflective boundaries, Rs = 10 �, Rct = 100 �. 



 

 

 

Figure 17. Dependence of the real and imaginary admittances for a diffusion-kinetic process on 
the electrode potential. 



 

 

Figure 18. Dependence of real and imaginary parts of the faradaic impedance of a diffusion-
kinetic process on �-1/2 at constant potential. 



 
 
 
 
 
 

Figure 19. Dependence of cot �  as a function of potential for TiCl4 reduction in H2C2O4 at 
various frequencies.77 



 
 
 

Figure 20. . Dependence of cot � vs. �1/2 for TiCl4 reduction in H2C2O4. Data from ref. 77. 
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Figure 21. Equivalent circuit for the case of one adsorbed species: a) for B < 0, b) B > 0. 



 

 
 

Figure 22. Complex plane plots for the case of one adsorbed species and B < 0, eqns. (139)-(140); 
continuous line - total impedance, dashed line - faradaic impedance; parameters used: Rct = 100 
�, Ra = 100 �, Ca = 2	10-3 F, Cdl = 2	10-5 F, Rs = 10 �. 

 



 
 

Figure 23. Complex plane plot for the case of one adsorbed species, B < 0 and C - Rct  |B| = 0; 
continuous line - total impedance, dashed line - faradaic impedance; parameters used: Rct = 100 
�, Ca = 2	10-3 F, Cdl = 2	10-5 F, Rs = 10 �. 



 
 

Figure 24. Complex plane plot for the case of one adsorbed species, B < 0 and C - Rct  |B| < 0; 
continuous line - total impedance, dashed line - faradaic impedance; parameters used: Rct = 
100 �, Ra = -200 �, Ca = 2	10-3 F, Cdl = 2	10-5 F, Rs = 10 �. 



 
 

Figure 25. Complex plane plots for the case of one adsorbed species and B > 0, eqns. (144)-(146); 
continuous line - total impedance, dashed line - faradaic impedance; parameters used: Rct = 100 
�, Ro = 40 �, L = 0.2 H, Cdl = 2	10-5 F, Rs = 10 �. 



 

 

Figure 26. Some examples of the complex plane plots obtained for the case of two adsorbed 
species.94 



 

 

 
 
 
 

Figure 27. The distribution function 
G(
) versus ln(
/
0) according to eqn. (176). 
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Figure 28. Complex plane plots in the presence of a CPE element: a) ideally polarizable electrode, 
b) in the presence of faradaic reaction. 



 

 

 

Figure 29. Equivalent-circuit model of the electrode in the presence of adsorption.107 



 
 
 

Figure 30. Nyquist plot of complex capacitances for Au(111) in 0.1 M HClO4 in the presence of 
bromide ions; Br- concentrations given in the figure, upper three curves at E = 0.3 V, lower three 
curves at E = 0.1 V vs. SCE.107 

 
 



 
 

Figure 31. Complex plane plots for the bounded thickness impedance (BCP) for Rs = 100 �, T = 
0.01 F cm-2 s�-1, and different values of parameter �. 



 
 

Figure 32. Comparison of a simple (b) and fractal (c) magnifications of the image (a).111 

 



 

 
 
 
 

Figure 33. Complex plane plots on fractal electrodes for different values of parameter �. 

 



 
 

 

Figure 34. Pore model. 
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Figure 35. . Complex plane plots for a porous electrode according to de Levie’s model, eqn. 
(195): (a) general case, eqn.(195); (b) limiting case for shallow pores, eqn. (199); (c) limiting case 
for very deep pores, eqn. (200). 

 



 
 
 

Figure 36. Complex plane plots for LaPO4-bonded Ni powder electrodes during hydrogen 
evolution in 30% NaOH at 700C.147 
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Figure 37. Complex plane plots for a porous electrode at different overpotentials ; pore 
parameters: l = 0.05 cm, r = 10-4 cm, � = 10 � cm, j0 = 10-6 A cm-2, �0: a) 0.025, b) 0.1, c) 0.2, d) 
0.3, e) 0.4, and f) 0.5 V. Continuous lines - simulated, dashed lines - calculated using de Levie's 
model, eqn.(195).149 



 
 
 
 
 

Figure 38. Complex plane plots for a porous electrode in the presence of a concentration gradient 
at different overpotentials; l = 0.05 cm, r = 10-4 cm, � = 10 � cm, D = 10-5 cm2 s--1, m = 1, j0 = 
10-7 A cm-2, CO

* = 0.01 M. 

 



 

 
 

Figure 39. Influence of the depolarizer concentration on the complex plane plots for a porous 
electrode; j0 = 10-6 A cm-2, � = 0.2 V, concentrations in mol cm-3 are indicated in the figure, other 
parameters as in Figure 38. 



 
 

Figure 40. Calculated impedances for various shapes of a single pore blocking electrode.159 
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Figure 41. Voigt (a) and ladder (b) models. 
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Figure 42. Impedance spectrum for an Al electrode in water (a) and its Kramers-Kronig transforms, (b) and (c).177 



 

 
 
 

 
 

Figure 43. Alternative circuits for the impedance behavior of a system containing one capacitive 
loop. 
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Figure 44. Three circuits describing a system displaying two capacitive loops: (a) ladder, (b) 
Voigt, (c) mixed. 
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Figure 45. Typical circuits used in ac modeling; they are experimentally indistinguishable: (a) 
Voigt, (b) Maxwell, (c) ladder.18 



 

 
 
 
 
 
 

Figure 46. . Equivalent circuit for the case of a slow response of the potentiostat. 
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Figure 47. Impedance diagrams for different distances x between the working electrode and the 
Luggin capillary tip in: (a) 80% acetic acid; (b) 100% acetic acid.223 


